Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: NonMaxSuppressionWithOverlaps
#include <image_ops.h>
Azalan puan sırasına göre sınırlayıcı kutuların bir alt kümesini açgözlülükle seçer.
Özet
önceden seçilen kutularla yüksek oranda örtüşen kutuların budanması. score_threshold
değerinden düşük puana sahip sınırlayıcı kutular kaldırılır. N'ye n örtüşme değerleri, özel bir örtüşme kriterinin (örneğin, birleşim üzerinde kesişim, alan üzerinde kesişim vb.) tanımlanmasına olanak tanıyan kare matris olarak sağlanır.
Bu işlemin çıktısı, seçilen kutuları temsil eden sınırlayıcı kutuların giriş koleksiyonuna indekslenen bir tamsayılar kümesidir. Seçilen endekslere karşılık gelen sınırlayıcı kutu koordinatları daha sonra tf.gather operation
kullanılarak elde edilebilir. Örneğin:
seçilen_indices = tf.image.non_max_suppression_with_overlaps(örtüşmeler, puanlar, max_output_size, örtüşme_eşiği, puan_threshold) seçili_boxes = tf.gather(kutular, seçili_indices)
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- örtüşmeler: n'ye n kutu örtüşme değerlerini temsil eden
[num_boxes, num_boxes]
şeklindeki 2 boyutlu kayan tensör. - puanlar: Her kutuya (kutuların her satırı) karşılık gelen tek bir puanı temsil eden
[num_boxes]
şeklindeki 1 boyutlu kayan tensör. - max_output_size: Maksimum dışı bastırma tarafından seçilecek maksimum kutu sayısını temsil eden bir skaler tamsayı tensörü.
- Overover_threshold: Kutuların da üst üste gelip gelmediğine karar vermek için eşiği temsil eden 0-D kayan tensör.
- Score_threshold: Puana göre kutuların ne zaman kaldırılacağına karar verme eşiğini temsil eden 0 boyutlu kayan tensör.
İade:
-
Output
: Kutu tensöründen seçilen endeksleri temsil eden [M]
şeklinde bir 1 boyutlu tamsayı tensörü; burada M <= max_output_size
.
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::NonMaxSuppressionWithOverlaps Class Reference\n\ntensorflow::ops::NonMaxSuppressionWithOverlaps\n==============================================\n\n`#include \u003cimage_ops.h\u003e`\n\nGreedily selects a subset of bounding boxes in descending order of score,.\n\nSummary\n-------\n\npruning away boxes that have high overlaps with previously selected boxes. Bounding boxes with score less than `score_threshold` are removed. N-by-n overlap values are supplied as square matrix, which allows for defining a custom overlap criterium (eg. intersection over union, intersection over area, etc.).\n\nThe output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the `tf.gather operation`. For example:\n\nselected_indices = tf.image.non_max_suppression_with_overlaps( overlaps, scores, max_output_size, overlap_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices)\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- overlaps: A 2-D float tensor of shape `[num_boxes, num_boxes]` representing the n-by-n box overlap values.\n- scores: A 1-D float tensor of shape `[num_boxes]` representing a single score corresponding to each box (each row of boxes).\n- max_output_size: A scalar integer tensor representing the maximum number of boxes to be selected by non max suppression.\n- overlap_threshold: A 0-D float tensor representing the threshold for deciding whether boxes overlap too.\n- score_threshold: A 0-D float tensor representing the threshold for deciding when to remove boxes based on score.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A 1-D integer tensor of shape `[M]` representing the selected indices from the boxes tensor, where `M \u003c= max_output_size`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [NonMaxSuppressionWithOverlaps](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1af965488437d8cbc7c79e1c36eca2abb3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` overlaps, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` scores, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_output_size, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` overlap_threshold, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` score_threshold)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a2f05b95bdafce0c5fc4a8269b35709e3) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [selected_indices](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1ab9ac497f027b7104d8ba5463a5a487ca) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a77c8843216c117ea9cc2597027f4a20e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a46f0366220ce965998602e5248c93070)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a636de2d3e1a950d52efadd9bff02eb59)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### selected_indices\n\n```scdoc\n::tensorflow::Output selected_indices\n``` \n\nPublic functions\n----------------\n\n### NonMaxSuppressionWithOverlaps\n\n```gdscript\n NonMaxSuppressionWithOverlaps(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input overlaps,\n ::tensorflow::Input scores,\n ::tensorflow::Input max_output_size,\n ::tensorflow::Input overlap_threshold,\n ::tensorflow::Input score_threshold\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]