Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: SparseSegmentMeanWithNumSegments
#include <math_ops.h>
Bir tensörün seyrek bölümleri boyunca ortalamayı hesaplar.
Özet
SparseSegmentMean
benzer, ancak segment_ids
eksik kimliklere izin verir. Bir kimlik eksikse bu konumdaki output
tensörü sıfırlanacaktır.
Segmentlerin açıklaması için segmentasyon bölümünü okuyun.
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- endeksler: 1 boyutlu bir tensör.
segment_ids
ile aynı sıralamaya sahiptir. - segment_ids: 1 boyutlu bir tensör. Değerler sıralanmalı ve tekrarlanabilir olmalıdır.
- num_segments: Farklı segment kimliklerinin sayısına eşit olmalıdır.
İade:
-
Output
: num_segments
boyutuna sahip 0 boyutu dışında verilerle aynı şekle sahiptir.
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-25 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::SparseSegmentMeanWithNumSegments Class Reference\n\ntensorflow::ops::SparseSegmentMeanWithNumSegments\n=================================================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes the mean along sparse segments of a tensor.\n\nSummary\n-------\n\nLike [SparseSegmentMean](/versions/r1.15/api_docs/cc/class/tensorflow/ops/sparse-segment-mean#classtensorflow_1_1ops_1_1_sparse_segment_mean), but allows missing ids in `segment_ids`. If an id is misisng, the `output` tensor at that position will be zeroed.\n\nRead [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) for an explanation of segments.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: A 1-D tensor. Has same rank as `segment_ids`.\n- segment_ids: A 1-D tensor. Values should be sorted and can be repeated.\n- num_segments: Should equal the number of distinct segment IDs.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Has same shape as data, except for dimension 0 which has size `num_segments`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSegmentMeanWithNumSegments](#classtensorflow_1_1ops_1_1_sparse_segment_mean_with_num_segments_1acc14eb336c9bb422d63a332e5ff475aa)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` data, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` segment_ids, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` num_segments)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_segment_mean_with_num_segments_1a1750008c63c66918b6adeac3d952ecef) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_segment_mean_with_num_segments_1a7a024ed618e930ac1bea2d738bd0f394) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_segment_mean_with_num_segments_1ab959360a1d82011d10097010d5274941)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_segment_mean_with_num_segments_1a0856c9bfce8692ac6cfaf403591e8d4e)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_segment_mean_with_num_segments_1a298a1bf3fbf9b34d2c306955c3090ff8)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseSegmentMeanWithNumSegments\n\n```gdscript\n SparseSegmentMeanWithNumSegments(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input data,\n ::tensorflow::Input indices,\n ::tensorflow::Input segment_ids,\n ::tensorflow::Input num_segments\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]