Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
przepływ tensorowy:: ops:: Zapisz plasterki
#include <io_ops.h>
Zapisuje wycinki tensorów wejściowych na dysku.
Streszczenie
Działa to podobnie jak Save
, z tą różnicą, że tensory mogą być wyszczególnione w zapisanym pliku jako wycinek większego tensora. shapes_and_slices
określa kształt większego tensora i wycinka zakrywanego przez ten tensor. shapes_and_slices
muszą mieć tyle elementów, ile tensor_names
.
Elementy danych wejściowych shapes_and_slices
muszą być:
- Pusty ciąg znaków, w którym to przypadku odpowiedni tensor jest zapisywany normalnie.
- Łańcuch znaków w postaci
dim0 dim1 ... dimN-1 slice-spec
gdzie dimI
to wymiary większego tensora, a slice-spec
określa, która część jest objęta tensorem do zapisania.
slice-spec
sama w sobie jest listą :
-rozdzieloną: slice0:slice1:...:sliceN-1
gdzie każdy sliceI
to:
- String
-
co oznacza, że plasterek obejmuje wszystkie indeksy tego wymiaru -
start,length
gdzie start
i length
są liczbami całkowitymi. W takim przypadku plasterek obejmuje indeksy length
począwszy od start
.
Zobacz także Save
.
Argumenty:
- zakres: Obiekt Scope
- nazwa pliku: musi zawierać jeden element. Nazwa pliku, do którego zapiszemy tensor.
- tensor_names: Kształt
[N]
. Nazwy tensorów, które mają zostać zapisane. - kształty_i_plasterki: Kształt
[N]
. Kształty i specyfikacje plasterków używane podczas zapisywania tensorów. - dane:
N
tensorów do zapisania.
Zwroty:
Atrybuty publiczne
Funkcje publiczne
operator::tensorflow::Operacja
operator::tensorflow::Operation() const
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-26 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::SaveSlices Class Reference\n\ntensorflow::ops::SaveSlices\n===========================\n\n`#include \u003cio_ops.h\u003e`\n\nSaves input tensors slices to disk.\n\nSummary\n-------\n\nThis is like [Save](/versions/r2.0/api_docs/cc/class/tensorflow/ops/save#classtensorflow_1_1ops_1_1_save) except that tensors can be listed in the saved file as being a slice of a larger tensor. `shapes_and_slices` specifies the shape of the larger tensor and the slice that this tensor covers. `shapes_and_slices` must have as many elements as `tensor_names`.\n\nElements of the `shapes_and_slices` input must either be:\n\n\n- The empty string, in which case the corresponding tensor is saved normally.\n- A string of the form `dim0 dim1 ... dimN-1 slice-spec` where the `dimI` are the dimensions of the larger tensor and `slice-spec` specifies what part is covered by the tensor to save.\n\n\u003cbr /\u003e\n\n`slice-spec` itself is a `:`-separated list: `slice0:slice1:...:sliceN-1` where each `sliceI` is either:\n\n\n- The string `-` meaning that the slice covers all indices of this dimension\n- `start,length` where `start` and `length` are integers. In that case the slice covers `length` indices starting at `start`.\n\n\u003cbr /\u003e\n\nSee also [Save](/versions/r2.0/api_docs/cc/class/tensorflow/ops/save#classtensorflow_1_1ops_1_1_save).\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- filename: Must have a single element. The name of the file to which we write the tensor.\n- tensor_names: Shape `[N]`. The names of the tensors to be saved.\n- shapes_and_slices: Shape `[N]`. The shapes and slice specifications to use when saving the tensors.\n- data: `N` tensors to save.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SaveSlices](#classtensorflow_1_1ops_1_1_save_slices_1a348703b8b3b5deaa67138609a3e7fa0c)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filename, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` tensor_names, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shapes_and_slices, ::`[tensorflow::InputList](/versions/r2.0/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` data)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_save_slices_1a0ef740836d01295141e4a0c6cfc9d4a2) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_save_slices_1a31b63fe266dfcc7f28eae47f400212b3)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### SaveSlices\n\n```gdscript\n SaveSlices(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input filename,\n ::tensorflow::Input tensor_names,\n ::tensorflow::Input shapes_and_slices,\n ::tensorflow::InputList data\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n```"]]