संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: सॉफ्टमैक्स
#include <nn_ops.h>
सॉफ्टमैक्स सक्रियणों की गणना करता है।
सारांश
प्रत्येक बैच i
और कक्षा j
के लिए हमारे पास है
$$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- लॉगिट्स: 2-डी आकार के साथ
[batch_size, num_classes]
।
रिटर्न:
सार्वजनिक गुण
सार्वजनिक समारोह
नोड
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ऑपरेटर::टेन्सरफ़्लो::आउटपुट
operator::tensorflow::Output() const
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::Softmax Class Reference\n\ntensorflow::ops::Softmax\n========================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes softmax activations.\n\nSummary\n-------\n\nFor each batch `i` and class `j` we have \n\n```maxima\n$$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- logits: 2-D with shape `[batch_size, num_classes]`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same shape as `logits`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Softmax](#classtensorflow_1_1ops_1_1_softmax_1a565ed3a9b8adbafdb0a1b2061ce9cb08)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` logits)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_softmax_1ae62568a4488f40832dac845de04cff94) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [softmax](#classtensorflow_1_1ops_1_1_softmax_1af8238048a2a280f84eee57c9c1919084) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_softmax_1afda37c06f46dc3432931b9d9d88c5d2f)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_softmax_1aa54bc0dd86d6e5de7ad24726ce6dd814)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_softmax_1ae17f3a9a7db00b3a8a148668fe8b45d8)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### softmax\n\n```text\n::tensorflow::Output softmax\n``` \n\nPublic functions\n----------------\n\n### Softmax\n\n```gdscript\n Softmax(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input logits\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]