Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: Doldurmak
#include <array_ops.h>
Skaler değerle dolu bir tensör oluşturur.
Özet
Bu işlem, şekil dims
tensörünü oluşturur ve onu value
doldurur.
Örneğin:
# Output tensor has shape [2, 3].
fill([2, 3], 9) ==> [[9, 9, 9]
[9, 9, 9]]
tf.fill
tf.constant
birkaç açıdan farklılık gösterir:
-
tf.fill
yalnızca skaler içerikleri desteklerken tf.constant
Tensör değerlerini destekler. -
tf.fill
hesaplama grafiğinde çalışma zamanında gerçek Tensör değerini oluşturan bir Op oluşturur. Bu, Tensörün tamamını bir Const
düğümüyle grafiğe yerleştiren tf.constant
tersidir. -
tf.fill
grafik çalışma zamanında değerlendirme yaptığı için tf.constant
farklı olarak diğer çalışma zamanı Tensörlerine dayalı dinamik şekilleri destekler.
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- kararır: 1-D. Çıkış tensörünün şeklini temsil eder.
- değer: 0-D (skaler). Döndürülen tensörü dolduracak değer.
(numpy) np.full'a eşdeğerdir
İade:
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Fill Class Reference\n\ntensorflow::ops::Fill\n=====================\n\n`#include \u003carray_ops.h\u003e`\n\nCreates a tensor filled with a scalar value.\n\nSummary\n-------\n\nThis operation creates a tensor of shape `dims` and fills it with `value`.\n\nFor example:\n\n\n```text\n# Output tensor has shape [2, 3].\nfill([2, 3], 9) ==\u003e [[9, 9, 9]\n [9, 9, 9]]\n```\n\n\u003cbr /\u003e\n\n`tf.fill` differs from `tf.constant` in a few ways:\n\n\n- `tf.fill` only supports scalar contents, whereas `tf.constant` supports [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) values.\n- `tf.fill` creates an Op in the computation graph that constructs the actual [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) value at runtime. This is in contrast to `tf.constant` which embeds the entire [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) into the graph with a `Const` node.\n- Because `tf.fill` evaluates at graph runtime, it supports dynamic shapes based on other runtime Tensors, unlike `tf.constant`.\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- dims: 1-D. Represents the shape of the output tensor.\n- value: 0-D (scalar). Value to fill the returned tensor.\n\n\u003cbr /\u003e\n\n(numpy) Equivalent to np.full\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Fill](#classtensorflow_1_1ops_1_1_fill_1a01c1c041aa66636af36c215a28cad8f8)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dims, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` value)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_fill_1ab58dad131aa0ced03a7b508cb5f17ee8) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_fill_1af59efc826ad951c4bb994ccf186b0e3c) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_fill_1a470a2e887eb44734252766d0f4759b04)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_fill_1a7eb9e821e29fbfa81a25dd5ae382ce1f)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_fill_1a952032189c0e55332094cc69e197ae06)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Fill\n\n```gdscript\n Fill(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input dims,\n ::tensorflow::Input value\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]