Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: Akoş
#include <math_ops.h>
x'in ters hiperbolik kosinüsünü eleman bazında hesaplar.
Özet
Bir giriş tensörü verildiğinde, fonksiyon her elemanın ters hiperbolik kosinüsünü hesaplar. Giriş aralığı [1, inf]
şeklindedir. Giriş aralığın dışındaysa nan
döndürür.
x = tf.constant([-2, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.acosh(x) ==> [nan nan 0. 0.62236255 5.9914584 9.903487 inf]
Argümanlar:
İade:
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Acosh Class Reference\n\ntensorflow::ops::Acosh\n======================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes inverse hyperbolic cosine of x element-wise.\n\nSummary\n-------\n\nGiven an input tensor, the function computes inverse hyperbolic cosine of every element. [Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input) range is `[1, inf]`. It returns `nan` if the input lies outside the range.\n\n\n```gdscript\nx = tf.constant([-2, -0.5, 1, 1.2, 200, 10000, float(\"inf\")])\ntf.math.acosh(x) ==\u003e [nan nan 0. 0.62236255 5.9914584 9.903487 inf]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The y tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Acosh](#classtensorflow_1_1ops_1_1_acosh_1a31b3474b5d1e71240fe6088301abf0a5)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_acosh_1aa991cae2b2e8e5c5ba714a927be34d8c) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [y](#classtensorflow_1_1ops_1_1_acosh_1a5afe6daf80428d88039349ebf210c1cf) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_acosh_1a21ed3b868b1295f99f00438352ce0ac9)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_acosh_1a45294a289edf40798c124ba4de38e96c)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_acosh_1a10bde9ae4d7770247d77d86b34da6752)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### y\n\n```text\n::tensorflow::Output y\n``` \n\nPublic functions\n----------------\n\n### Acosh\n\n```gdscript\n Acosh(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]