Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
przepływ tensorowy:: ops:: ZastosujFtrl
#include <training_ops.h>
Zaktualizuj „*var” zgodnie ze schematem Ftrl-proksymalny.
Streszczenie
accum_new = accum + grad * grad linear += grad + (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var kwadratowy = 1,0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (znak(liniowy) * l1 - liniowy) / kwadratowy jeśli |liniowy| > l1 else 0,0 accum = accum_new
Argumenty:
- zakres: Obiekt Scope
- var: Powinien pochodzić ze zmiennej ().
- accum: Powinien pochodzić ze zmiennej ().
- liniowy: powinien pochodzić ze zmiennej ().
- grad: gradient.
- lr: Współczynnik skalowania. Musi być skalarem.
- l1: Uregulowanie L1. Musi być skalarem.
- l2: Uregulowanie L2. Musi być skalarem.
- lr_power: Współczynnik skalowania. Musi być skalarem.
Opcjonalne atrybuty (patrz Attrs
):
- use_locking: Jeśli
True
, aktualizacja tensorów var i accum będzie chroniona blokadą; w przeciwnym razie zachowanie jest niezdefiniowane, ale może wykazywać mniejszą rywalizację.
Zwroty:
-
Output
: takie same jak „var”.
Konstruktory i destruktory |
---|
ApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power)
|
ApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const ApplyFtrl::Attrs & attrs) |
Atrybuty publiczne
Funkcje publiczne
węzeł
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Wyjście
operator::tensorflow::Output() const
Publiczne funkcje statyczne
Użyj Blokowania
Attrs UseLocking(
bool x
)
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-27 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::ApplyFtrl Class Reference\n\ntensorflow::ops::ApplyFtrl\n==========================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the Ftrl-proximal scheme.\n\nSummary\n-------\n\naccum_new = accum + grad \\* grad linear += grad + (accum_new\\^(-lr_power) - accum\\^(-lr_power)) / lr \\* var quadratic = 1.0 / (accum_new\\^(lr_power) \\* lr) + 2 \\* l2 var = (sign(linear) \\* l1 - linear) / quadratic if \\|linear\\| \\\u003e l1 else 0.0 accum = accum_new\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- accum: Should be from a Variable().\n- linear: Should be from a Variable().\n- grad: The gradient.\n- lr: Scaling factor. Must be a scalar.\n- l1: L1 regulariation. Must be a scalar.\n- l2: L2 regulariation. Must be a scalar.\n- lr_power: Scaling factor. Must be a scalar.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/apply-ftrl/attrs#structtensorflow_1_1ops_1_1_apply_ftrl_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ApplyFtrl](#classtensorflow_1_1ops_1_1_apply_ftrl_1aac92c9a511a285b2ba2fd70bb8a9162a)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power)` ||\n| [ApplyFtrl](#classtensorflow_1_1ops_1_1_apply_ftrl_1a08ae5f59e96c0806cac695b49d0b7e6c)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power, const `[ApplyFtrl::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/apply-ftrl/attrs#structtensorflow_1_1ops_1_1_apply_ftrl_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_apply_ftrl_1a60bfef0fb8957ad8ebd90bcc1b17deb5) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_apply_ftrl_1a4ce2fdad41c33119e072faa142ab6388) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_apply_ftrl_1a83ed3b447bb12a6a2026a5ecd546311c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_apply_ftrl_1a93e6e2aec1e38ede37126e36574daf64)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_apply_ftrl_1aae1ab05c604dfd771e781b62fa213b30)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_apply_ftrl_1a1052290b6434db12d630a2e9d0b1b197)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/apply-ftrl/attrs#structtensorflow_1_1ops_1_1_apply_ftrl_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ApplyFtrl::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/apply-ftrl/attrs) | Optional attribute setters for [ApplyFtrl](/versions/r2.0/api_docs/cc/class/tensorflow/ops/apply-ftrl#classtensorflow_1_1ops_1_1_apply_ftrl). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### ApplyFtrl\n\n```gdscript\n ApplyFtrl(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input lr_power\n)\n``` \n\n### ApplyFtrl\n\n```gdscript\n ApplyFtrl(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input lr_power,\n const ApplyFtrl::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]