संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
#include <nn_ops.h>
इनपुट के संबंध में कनवल्शन के ग्रेडिएंट की गणना करता है।
सारांश
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- इनपुट_आकार:
input
के आकार का प्रतिनिधित्व करने वाला एक पूर्णांक वेक्टर, जहां input
4-डी [batch, height, width, channels]
टेंसर है। - फ़िल्टर: 4-डी आकार के साथ
[filter_height, filter_width, in_channels, out_channels]
। - आउट_बैकप्रॉप: आकार के साथ 4-डी
[batch, out_height, out_width, out_channels]
। ग्रेजुएट्स कनवल्शन के आउटपुट को लिखते हैं। - स्ट्राइड्स: कनवल्शन के इनपुट के प्रत्येक आयाम के लिए स्लाइडिंग विंडो की स्ट्राइड। प्रारूप के साथ निर्दिष्ट आयाम के समान क्रम में होना चाहिए।
- पैडिंग: उपयोग करने के लिए पैडिंग एल्गोरिदम का प्रकार।
वैकल्पिक विशेषताएँ (देखें Attrs
):
- स्पष्ट_पैडिंग: यदि
padding
"EXPLICIT"
है, तो स्पष्ट पैडिंग मात्राओं की सूची। Iवें आयाम के लिए, आयाम से पहले और बाद में डाली गई पैडिंग की मात्रा क्रमशः explicit_paddings[2 * i]
और explicit_paddings[2 * i + 1]
है। यदि padding
"EXPLICIT"
नहीं है, तो explicit_paddings
खाली होनी चाहिए। - data_format: इनपुट और आउटपुट डेटा का डेटा प्रारूप निर्दिष्ट करें। डिफ़ॉल्ट प्रारूप "एनएचडब्ल्यूसी" के साथ, डेटा को इस क्रम में संग्रहीत किया जाता है: [बैच, इन_हाइट, इन_विड्थ, इन_चैनल्स]। वैकल्पिक रूप से, प्रारूप "एनसीएचडब्ल्यू" हो सकता है, डेटा भंडारण क्रम: [बैच, इन_चैनल्स, इन_हाइट, इन_विड्थ]।
- फैलाव: लंबाई का 1-डी टेंसर 4.
input
के प्रत्येक आयाम के लिए फैलाव कारक। यदि k > 1 पर सेट किया जाता है, तो उस आयाम पर प्रत्येक फ़िल्टर तत्व के बीच k-1 छोड़ी गई कोशिकाएँ होंगी। आयाम क्रम data_format
के मान से निर्धारित होता है, विवरण के लिए ऊपर देखें। बैच में फैलाव और गहराई आयाम 1 होना चाहिए।
रिटर्न:
-
Output
: आकार के साथ 4-डी [batch, in_height, in_width, in_channels]
। ग्रेडिएंट कनवल्शन के इनपुट को लिखता है।
निर्माता और विध्वंसक |
---|
Conv2DBackpropInput (const :: tensorflow::Scope & scope, :: tensorflow::Input input_sizes, :: tensorflow::Input filter, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
Conv2DBackpropInput (const :: tensorflow::Scope & scope, :: tensorflow::Input input_sizes, :: tensorflow::Input filter, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv2DBackpropInput::Attrs & attrs) |
सार्वजनिक गुण
सार्वजनिक समारोह
सार्वजनिक स्थैतिक कार्य
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::Conv2DBackpropInput Class Reference\n\ntensorflow::ops::Conv2DBackpropInput\n====================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the gradients of convolution with respect to the input.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input_sizes: An integer vector representing the shape of `input`, where `input` is a 4-D `[batch, height, width, channels]` tensor.\n- filter: 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`.\n- out_backprop: 4-D with shape `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution.\n- strides: The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs)):\n\n- explicit_paddings: If `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `\"EXPLICIT\"`, `explicit_paddings` must be empty.\n- data_format: Specify the data format of the input and output data. With the default format \"NHWC\", the data is stored in the order of: \\[batch, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, in_channels, in_height, in_width\\].\n- dilations: 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[batch, in_height, in_width, in_channels]`. Gradient w.r.t. the input of the convolution.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Conv2DBackpropInput](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1aa5357992b64dbb43b51d35c084d442d8)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_sizes, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [Conv2DBackpropInput](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1a01da97aaaf681a4f6f45d3bda57f0f82)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_sizes, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[Conv2DBackpropInput::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1aebb0f66b81bb602fa8600e2e32f621b2) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1a53bf3bf2eb2af62764981f62c794fbe2) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1acf62af3e404315cfe9622e3d1295033b)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1a94315c7d6148fb6451deb58f91955405)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1a1bced60701935dddacef1af9398879df)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1ac762988224740afda86e2a852ef11774)`(StringPiece x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs) |\n| [Dilations](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1a01b3b905a6bba3d7c7e61238d45109e4)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs) |\n| [ExplicitPaddings](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1a4f19fe8f8ae4c3b237038489ba58a721)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs) |\n| [UseCudnnOnGpu](#classtensorflow_1_1ops_1_1_conv2_d_backprop_input_1a6df425d872077ec66d9eb2e2b42f767b)`(bool x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::Conv2DBackpropInput::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs) | Optional attribute setters for [Conv2DBackpropInput](/versions/r2.0/api_docs/cc/class/tensorflow/ops/conv2-d-backprop-input#classtensorflow_1_1ops_1_1_conv2_d_backprop_input). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Conv2DBackpropInput\n\n```gdscript\n Conv2DBackpropInput(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_sizes,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### Conv2DBackpropInput\n\n```gdscript\n Conv2DBackpropInput(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_sizes,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const Conv2DBackpropInput::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n``` \n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n\n### ExplicitPaddings\n\n```gdscript\nAttrs ExplicitPaddings(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n\n### UseCudnnOnGpu\n\n```text\nAttrs UseCudnnOnGpu(\n bool x\n)\n```"]]