Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
#include <nn_ops.h>
Conv2DBackpropInput için isteğe bağlı öznitelik ayarlayıcılar.
Özet
Kamu işlevleri |
---|
DataFormat (StringPiece x) | Giriş ve çıkış verilerinin veri formatını belirtin. |
Dilations (const gtl::ArraySlice< int > & x) | 1-D uzunluk tensörü 4. |
ExplicitPaddings (const gtl::ArraySlice< int > & x) | padding "EXPLICIT" ise, açık dolgu miktarlarının listesi. |
UseCudnnOnGpu (bool x) | Varsayılan olarak true'dur. |
Genel özellikler
Kamu işlevleri
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-25 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::Conv2DBackpropInput::Attrs Struct Reference\n\ntensorflow::ops::Conv2DBackpropInput::Attrs\n===========================================\n\n`#include \u003cnn_ops.h\u003e`\n\nOptional attribute setters for [Conv2DBackpropInput](/versions/r2.0/api_docs/cc/class/tensorflow/ops/conv2-d-backprop-input#classtensorflow_1_1ops_1_1_conv2_d_backprop_input).\n\nSummary\n-------\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|\n| [data_format_](#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs_1a0c1c7f7d2cbf215df9dc979b0fc2f1b2)` = \"NHWC\"` | `StringPiece` |\n| [dilations_](#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs_1ae1d90c85a264053bf6ace3e7c8998ee3)` = Default_dilations()` | `gtl::ArraySlice\u003c int \u003e` |\n| [explicit_paddings_](#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs_1a56d59dc45e96f03d6289660936e4f78a)` = {}` | `gtl::ArraySlice\u003c int \u003e` |\n| [use_cudnn_on_gpu_](#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs_1aeda7580c5db6f5c41aa8c2e447e5cc66)` = true` | `bool` |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs_1a6c39cb6a5daf9fab2fe4861667e94c8c)`(StringPiece x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs) Specify the data format of the input and output data. |\n| [Dilations](#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs_1a46e0bc68887b3aa0ab727f45de1e2a1b)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs) 1-D tensor of length 4. |\n| [ExplicitPaddings](#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs_1a4b187401b5a1bd9344fb0e8a9b7a2363)`(const gtl::ArraySlice\u003c int \u003e & x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs) If `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts. |\n| [UseCudnnOnGpu](#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs_1a7aff147907d16ee4db66d8e6a6782cf0)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/conv2-d-backprop-input/attrs#structtensorflow_1_1ops_1_1_conv2_d_backprop_input_1_1_attrs) Defaults to true. |\n\nPublic attributes\n-----------------\n\n### data_format_\n\n```scdoc\nStringPiece tensorflow::ops::Conv2DBackpropInput::Attrs::data_format_ = \"NHWC\"\n``` \n\n### dilations_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2DBackpropInput::Attrs::dilations_ = Default_dilations()\n``` \n\n### explicit_paddings_\n\n```scdoc\ngtl::ArraySlice\u003c int \u003e tensorflow::ops::Conv2DBackpropInput::Attrs::explicit_paddings_ = {}\n``` \n\n### use_cudnn_on_gpu_\n\n```scdoc\nbool tensorflow::ops::Conv2DBackpropInput::Attrs::use_cudnn_on_gpu_ = true\n``` \n\nPublic functions\n----------------\n\n### DataFormat\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2DBackpropInput::Attrs::DataFormat(\n StringPiece x\n)\n``` \nSpecify the data format of the input and output data.\n\nWith the default format \"NHWC\", the data is stored in the order of: \\[batch, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, in_channels, in_height, in_width\\].\n\nDefaults to \"NHWC\" \n\n### Dilations\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2DBackpropInput::Attrs::Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n1-D tensor of length 4.\n\nThe dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\nDefaults to \\[1, 1, 1, 1\\] \n\n### ExplicitPaddings\n\n```gdscript\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2DBackpropInput::Attrs::ExplicitPaddings(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \nIf `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts.\n\nFor the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `\"EXPLICIT\"`, `explicit_paddings` must be empty.\n\nDefaults to \\[\\] \n\n### UseCudnnOnGpu\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::Conv2DBackpropInput::Attrs::UseCudnnOnGpu(\n bool x\n)\n``` \nDefaults to true."]]