View source on GitHub |
Training utils.
Classes
class BestCheckpointExporter
: Keeps track of the best result, and saves its checkpoint.
class ExperimentParser
: Constructs the Experiment config from Flags or equivalent object.
class ParseConfigOptions
: Use this dataclass instead of FLAGS to customize parse_configuration().
Functions
cast_leaf_nested_dict(...)
: Cast the leaves of a dictionary with arbitrary depth in place.
convert_variables_to_constants_v2_as_graph(...)
: Replaces all the variables in a graph with constants of the same values.
create_optimizer(...)
: A create optimizer util to be backward compatability with new args.
create_trainer(...)
: Create trainer.
get_leaf_nested_dict(...)
: Get leaf from a dictionary with arbitrary depth with a list of keys.
maybe_create_best_ckpt_exporter(...)
: Maybe create a BestCheckpointExporter object, according to the config.
parse_configuration(...)
: Parses ExperimentConfig from flags.
read_global_step_from_checkpoint(...)
: Read global step from checkpoint, or get global step from its filename.
remove_ckpts(...)
: Remove model checkpoints, so we can restart.
save_gin_config(...)
: Serializes and saves the experiment config.
serialize_config(...)
: Serializes and saves the experiment config.
try_count_flops(...)
: Counts and returns model FLOPs.
try_count_params(...)
: Count the number of parameters if model is possible.
write_json_summary(...)
: Dump evaluation metrics to json file.
write_model_params(...)
: Writes the model parameters and shapes to a file.
write_summary(...)
: Write evaluation metrics to TF summary.
Other Members | |
---|---|
BEST_CHECKPOINT_NAME |
'best_ckpt'
|