|  View source on GitHub | 
Initialize to the identity kernel with the given shape.
tfc.layers.IdentityInitializer(
    gain=1
)
This creates an n-D kernel suitable for SignalConv* with the requested
support that produces an output identical to its input (except possibly at the
signal boundaries).
Methods
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
| config | A Python dictionary, the output of get_config(). | 
| Returns | |
|---|---|
| An Initializerinstance. | 
get_config
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None, **kwargs
)
Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
| shape | Shape of the tensor. | 
| dtype | Optional dtype of the tensor. | 
| **kwargs | Additional keyword arguments. |