View source on GitHub
  
 | 
Power learning rate decay with offset.
tfm.optimization.PowerDecayWithOffset(
    initial_learning_rate: float,
    power: float = 1.0,
    offset: int = 0,
    pre_offset_learning_rate: float = 1000000.0,
    name: str = 'PowerDecayWithOffset'
)
Learning rate equals to pre_offset_learning_rate if step < offset.
Otherwise, learning rate equals to lr * (step - offset)^power.
Methods
from_config
@classmethodfrom_config( config )
Instantiates a LearningRateSchedule from its config.
| Args | |
|---|---|
config
 | 
Output of get_config().
 | 
| Returns | |
|---|---|
A LearningRateSchedule instance.
 | 
get_config
get_config()
Get the configuration of the learning rate schedule.
__call__
__call__(
    step
)
Call self as a function.
    View source on GitHub