Layers package definition.
Classes
class BottleneckBlock
: A standard bottleneck block.
class BottleneckBlock3D
: Creates a 3D bottleneck block.
class BottleneckResidualInner
: Creates a single inner block of a bottleneck.
class BoxSampler
: Creates a BoxSampler to sample positive and negative boxes.
class CausalConvMixin
: Mixin class to implement CausalConv for tf.keras.layers.Conv
layers.
class Conv2D
: Conv2D layer supporting CausalConv.
class Conv3D
: Conv3D layer supporting CausalConv.
class DepthwiseConv2D
: DepthwiseConv2D layer supporting CausalConv.
class DepthwiseSeparableConvBlock
: Creates a depthwise separable convolution block with batch normalization.
class DetectionGenerator
: Generates the final detected boxes with scores and classes.
class GlobalAveragePool3D
: Creates a global average pooling layer with causal mode.
class InvertedBottleneckBlock
: An inverted bottleneck block.
class MaskSampler
: Samples and creates mask training targets.
class MultilevelDetectionGenerator
: Generates detected boxes with scores and classes for one-stage detector.
class MultilevelROIAligner
: Performs ROIAlign for the second stage processing.
class MultilevelROIGenerator
: Proposes RoIs for the second stage processing.
class PositionalEncoding
: Creates a network layer that adds a sinusoidal positional encoding.
class ROISampler
: Samples ROIs and assigns targets to the sampled ROIs.
class ResidualBlock
: A residual block.
class ResidualInner
: Creates a single inner block of a residual.
class ReversibleLayer
: Creates a reversible layer.
class Scale
: Scales the input by a trainable scalar weight.
class SelfGating
: Feature gating as used in S3D-G.
class SpatialAveragePool3D
: Creates a global average pooling layer pooling across spatial dimentions.
class SqueezeExcitation
: Creates a squeeze and excitation layer.
class StochasticDepth
: Creates a stochastic depth layer.
class TemporalSoftmaxPool
: Creates a network layer corresponding to temporal softmax pooling.