Bilinear resizes the images, then crops and finally pads to output size.
tfm.vision.spatial_transform_ops.bilinear_resize_with_crop_and_pad(
images: tf.Tensor,
rescale_size: tf.Tensor,
crop_offset: tf.Tensor,
crop_size: tf.Tensor,
output_size: tf.Tensor
) -> tf.Tensor
Args |
images
|
A tensor in shape (batch_size, input_h, input_w, ...) with arbitrary
numbers of channel dimensions.
|
rescale_size
|
An int tensor in shape (batch_size, 2), representing the sizes
of the rescaled images.
|
crop_offset
|
An int tensor in shape (batch_size, 2), representing the
left-top offset of the crop box. Applying negative offsets means adding
extra margins at the left-top.
|
crop_size
|
An int tensor in shape (batch_size, 2), representing the sizes of
the cropped images.
|
output_size
|
The size of the output image in (output_h, output_w).
|
Returns |
A tensor in shape (batch_size, output_h, output_w, ...). The result has the
same dtype as the input if it's float32, float16, bfloat16, otherwise the
result is float32.
|