View source on GitHub
  
 | 
Labeler for Region Proposal Network.
Inherits From: AnchorLabeler
tfm.vision.anchor.RpnAnchorLabeler(
    match_threshold=0.7,
    unmatched_threshold=0.3,
    rpn_batch_size_per_im=256,
    rpn_fg_fraction=0.5
)
Methods
label_anchors
label_anchors(
    anchor_boxes: Dict[str, tf.Tensor],
    gt_boxes: tf.Tensor,
    gt_labels: tf.Tensor
) -> Tuple[Dict[str, tf.Tensor], Dict[str, tf.Tensor]]
Labels anchors with ground truth inputs.
| Args | |
|---|---|
anchor_boxes
 | 
An ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors_per_location * 4]. The height_l and width_l represent the dimension of the feature pyramid at l-th level. For each anchor box, the tensor stores [y0, x0, y1, x1] for the four corners. | 
gt_boxes
 | 
A float tensor with shape [N, 4] representing ground-truth boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a box. | 
gt_labels
 | 
A integer tensor with shape [N, 1] representing ground-truth classes. | 
| Returns | |
|---|---|
score_targets_dict
 | 
An ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. | 
box_targets_dict
 | 
An ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, num_anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. | 
    View source on GitHub