|  View source on GitHub | 
Transformer parameters.
tfm.nlp.models.T5TransformerParams(
    num_layers: int,
    d_model: int,
    d_kv: int,
    num_heads: int,
    d_ff: int,
    vocab_size: int,
    target_vocab_size: Optional[int] = None,
    dropout_rate: float = 0.0,
    layer_norm_epsilon: float = 1e-06,
    shared_embedding: bool = False,
    vocab_embeddings_initializer: Optional[Initializer] = None,
    relative_attention_num_buckets: int = 32,
    relative_attention_max_distance: int = 128,
    relative_embeddings_initializer: Optional[Initializer] = None,
    weight_initializer: Optional[Initializer] = tfm.nlp.models.T5TransformerParams.weight_initializer,
    bias_initializer: Optional[Initializer] = None,
    rescale_query: bool = False,
    bidirectional: bool = True,
    ffn_activations: Sequence[str] = tfm.nlp.models.T5TransformerParams.ffn_activations,
    logits_via_embedding: bool = True,
    num_decoder_layers: Optional[int] = None,
    one_hot_embedding: bool = True,
    layer_sharing: bool = False,
    use_shared_relative_position_bias: bool = True,
    return_attention_scores: bool = False
)
Methods
weight_initializer
weight_initializer(
    dtype=None, **kwargs
)
He normal initializer.
Also available via the shortcut function
tf.keras.initializers.he_normal.
It draws samples from a truncated normal distribution centered on 0 with
stddev = sqrt(2 / fan_in) where fan_in is the number of input units in
the weight tensor.
Examples:
# Standalone usage:initializer = tf.keras.initializers.HeNormal()values = initializer(shape=(2, 2))
# Usage in a Keras layer:initializer = tf.keras.initializers.HeNormal()layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
| Args | |
|---|---|
| seed | A Python integer. Used to make the behavior of the initializer deterministic. Note that a seeded initializer will not produce the same random values across multiple calls, but multiple initializers will produce the same sequence when constructed with the same seed value. | 
| References | |
|---|---|
__eq__
__eq__(
    other
)