Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: ApplyCenteredRMSProp
#include <training_ops.h>
'*var'ı ortalanmış RMSProp algoritmasına göre güncelleyin.
Özet
Merkezlenmiş RMSProp algoritması, (merkezlenmemiş) ikinci anı kullanan normal RMSProp'un aksine, normalleştirme için ortalanmış ikinci momentin (yani varyansın) bir tahminini kullanır. Bu genellikle eğitime yardımcı olur, ancak hesaplama ve hafıza açısından biraz daha pahalıdır.
Bu algoritmanın yoğun uygulanmasında mg, ms ve mom'un grad sıfır olsa bile güncelleneceğini, ancak bu seyrek uygulamada mg, ms ve mom'un grad'ın sıfır olduğu yinelemelerde güncellenmeyeceğini unutmayın.
ortalama_kare = bozunum * ortalama_kare + (1-bozunma) * gradyan ** 2 ortalama_gradyan = bozunma * ortalama_gradyan + (1-bozunma) * gradyan
Delta = öğrenme_oranı * gradyan / sqrt(ortalama_kare + epsilon - ortalama_grad ** 2)
mg <- rho * mg_{t-1} + (1-rho) * derece ms <- rho * ms_{t-1} + (1-rho) * derece * derece anne <- momentum * anne_{t-1 } + lr * grad / sqrt(ms - mg * mg + epsilon) var <- var - mom
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- var: Bir Variable()'dan olmalıdır.
- mg: Bir Değişken()'den olmalıdır.
- ms: Bir Variable()'dan olmalıdır.
- anne: Bir Variable()'dan olmalı.
- lr: Ölçeklendirme faktörü. Bir skaler olmalı.
- rho: Bozunma oranı. Bir skaler olmalı.
- epsilon: Ridge terimi. Bir skaler olmalı.
- grad: Gradyan.
İsteğe bağlı özellikler (bkz. Attrs
):
- use_locking:
True
ise var, mg, ms ve mom tensörlerinin güncellenmesi bir kilitle korunur; aksi takdirde davranış tanımsızdır ancak daha az çekişme sergileyebilir.
İade:
Yapıcılar ve Yıkıcılar |
---|
ApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
|
ApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ApplyCenteredRMSProp::Attrs & attrs) |
Genel özellikler
Kamu işlevleri
ApplyCenteredRMSProp
ApplyCenteredRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input mg,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
const ApplyCenteredRMSProp::Attrs & attrs
)
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Genel statik işlevler
KullanımKilitleme
Attrs UseLocking(
bool x
)
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-27 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::ApplyCenteredRMSProp Class Reference\n\ntensorflow::ops::ApplyCenteredRMSProp\n=====================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the centered RMSProp algorithm.\n\nSummary\n-------\n\nThe centered RMSProp algorithm uses an estimate of the centered second moment (i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncentered) second moment. This often helps with training, but is slightly more expensive in terms of computation and memory.\n\nNote that in dense implementation of this algorithm, mg, ms, and mom will update even if the grad is zero, but in this sparse implementation, mg, ms, and mom will not update in iterations during which the grad is zero.\n\nmean_square = decay \\* mean_square + (1-decay) \\* gradient \\*\\* 2 mean_grad = decay \\* mean_grad + (1-decay) \\* gradient\n\nDelta = learning_rate \\* gradient / sqrt(mean_square + epsilon - mean_grad \\*\\* 2)\n\nmg \\\u003c- rho \\* mg_{t-1} + (1-rho) \\* grad ms \\\u003c- rho \\* ms_{t-1} + (1-rho) \\* grad \\* grad mom \\\u003c- momentum \\* mom_{t-1} + lr \\* grad / sqrt(ms - mg \\* mg + epsilon) var \\\u003c- var - mom\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- mg: Should be from a Variable().\n- ms: Should be from a Variable().\n- mom: Should be from a Variable().\n- lr: Scaling factor. Must be a scalar.\n- rho: Decay rate. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, mg, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ApplyCenteredRMSProp](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a4bd3dd81dc6d1695c9ad5728462dd8cd)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mg, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad)` ||\n| [ApplyCenteredRMSProp](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a632653cb819d859518dab8ceb0e7601c)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mg, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const `[ApplyCenteredRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a1eed55db035d88dc72301a9da4440e4a) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a62975e9d2166f002e315def153375125) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1aa871631223879c0e00dc1ad75118f3ad)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a9c793c604a2790930231f4244e7118cb)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1a5506a3056061103ac1e9a7a48412a968)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1ace802790fc34b37dc6b7574ea6f55cea)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ApplyCenteredRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-centered-r-m-s-prop/attrs) | Optional attribute setters for [ApplyCenteredRMSProp](/versions/r1.15/api_docs/cc/class/tensorflow/ops/apply-centered-r-m-s-prop#classtensorflow_1_1ops_1_1_apply_centered_r_m_s_prop). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### ApplyCenteredRMSProp\n\n```gdscript\n ApplyCenteredRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input mg,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad\n)\n``` \n\n### ApplyCenteredRMSProp\n\n```gdscript\n ApplyCenteredRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input mg,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n const ApplyCenteredRMSProp::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]