Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: ArgMin
#include <math_ops.h>
Bir tensörün boyutları genelinde en küçük değere sahip dizini döndürür.
Özet
Eşitlik durumunda dönüş değerinin kimliğinin garanti edilmediğini unutmayın.
Kullanımı:
import tensorflow as tf
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
b = tf.math.argmin(input = a)
c = tf.keras.backend.eval(b)
# c = 0
# here a[0] = 1 which is the smallest element of a across axis 0
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- boyut: int32 veya int64,
[-rank(input), rank(input))
aralığında olmalıdır. Giriş Tensörünün hangi boyutunun azaltılacağını açıklar. Vektörler için boyut = 0'ı kullanın.
İade:
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Genel statik işlevler
Çıkış Türü
Attrs OutputType(
DataType x
)
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::ArgMin Class Reference\n\ntensorflow::ops::ArgMin\n=======================\n\n`#include \u003cmath_ops.h\u003e`\n\nReturns the index with the smallest value across dimensions of a tensor.\n\nSummary\n-------\n\nNote that in case of ties the identity of the return value is not guaranteed.\n\nUsage: \n\n```python\n import tensorflow as tf\n a = [1, 10, 26.9, 2.8, 166.32, 62.3]\n b = tf.math.argmin(input = a)\n c = tf.keras.backend.eval(b)\n # c = 0\n # here a[0] = 1 which is the smallest element of a across axis 0\n \n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- dimension: int32 or int64, must be in the range `[-rank(input), rank(input))`. Describes which dimension of the input [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) to reduce across. For vectors, use dimension = 0.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ArgMin](#classtensorflow_1_1ops_1_1_arg_min_1a168791dd65474f6516ead5c14c228809)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dimension)` ||\n| [ArgMin](#classtensorflow_1_1ops_1_1_arg_min_1a585efda09c698305c3b4d4bd52e2ef89)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dimension, const `[ArgMin::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/arg-min/attrs#structtensorflow_1_1ops_1_1_arg_min_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_arg_min_1a2f56dc97fc445cb193387875c3d85750) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_arg_min_1adf842d8733fb5c05cf8773604ce4e39c) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_arg_min_1aaa10eba6321c4a8bc4d7cf58a21e3328)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_arg_min_1a03587f44a8e9ecd6778a4a68e0fcf506)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_arg_min_1a191191cb11c666a611ba6e2bf95c15b7)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|\n| [OutputType](#classtensorflow_1_1ops_1_1_arg_min_1a164b1adce713e1a74f370b6fd657626f)`(DataType x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/arg-min/attrs#structtensorflow_1_1ops_1_1_arg_min_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ArgMin::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/arg-min/attrs) | Optional attribute setters for [ArgMin](/versions/r1.15/api_docs/cc/class/tensorflow/ops/arg-min#classtensorflow_1_1ops_1_1_arg_min). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### ArgMin\n\n```gdscript\n ArgMin(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input dimension\n)\n``` \n\n### ArgMin\n\n```gdscript\n ArgMin(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input dimension,\n const ArgMin::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### OutputType\n\n```text\nAttrs OutputType(\n DataType x\n)\n```"]]