Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: BatchMatMulV2
#include <math_ops.h>
İki tensörün dilimlerini gruplar halinde çarpar.
Özet
Tensor
x
ve y
tüm dilimlerini çarpar (her dilim bir grubun öğesi olarak görülebilir) ve bireysel sonuçları aynı toplu iş boyutunda tek bir çıkış tensöründe düzenler. Bireysel dilimlerin her biri isteğe bağlı olarak, çarpmadan önce adj_x
veya adj_y
bayrağını varsayılan olarak False
olan True
olarak ayarlayarak birleştirilebilir (bir matrisi birleştirmek, onu transpoze etmek ve birleştirmek anlamına gelir).
Giriş tensörleri x
ve y
[..., r_x, c_x]
ve [..., r_y, c_y]
şeklinde 2 boyutlu veya daha yüksektir.
Çıkış tensörü 2 boyutlu veya daha yüksek olup [..., r_o, c_o]
şeklindedir; burada:
r_o = c_x if adj_x else r_x
c_o = r_y if adj_y else c_y
Şu şekilde hesaplanır:
output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])
NOT : BatchMatMulV2
toplu boyutlarda yayını destekler. Yayıncılık hakkında daha fazla bilgiyi burada bulabilirsiniz .
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- x: 2 boyutlu veya daha yüksek şekilli
[..., r_x, c_x]
. - y: 2 boyutlu veya daha yüksek şekilli
[..., r_y, c_y]
.
İsteğe bağlı özellikler (bkz. Attrs
):
- adj_x: Eğer
True
ise, x
dilimlerini birleştirin. Varsayılan olarak False
ayarlanır. - adj_y: Eğer
True
ise, y
dilimlerini birleştirin. Varsayılan olarak False
ayarlanır.
İade:
-
Output
: 3 boyutlu veya daha yüksek şekilli [..., r_o, c_o]
Genel statik işlevler |
---|
AdjX (bool x) | |
AdjY (bool x) | |
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Genel statik işlevler
AdjX
Attrs AdjX(
bool x
)
AdjY
Attrs AdjY(
bool x
)
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::BatchMatMulV2 Class Reference\n\ntensorflow::ops::BatchMatMulV2\n==============================\n\n`#include \u003cmath_ops.h\u003e`\n\nMultiplies slices of two tensors in batches.\n\nSummary\n-------\n\nMultiplies all slices of [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor)`x` and `y` (each slice can be viewed as an element of a batch), and arranges the individual results in a single output tensor of the same batch size. Each of the individual slices can optionally be adjointed (to adjoint a matrix means to transpose and conjugate it) before multiplication by setting the `adj_x` or `adj_y` flag to `True`, which are by default `False`.\n\nThe input tensors `x` and `y` are 2-D or higher with shape `[..., r_x, c_x]` and `[..., r_y, c_y]`.\n\nThe output tensor is 2-D or higher with shape `[..., r_o, c_o]`, where: \n\n```scdoc\nr_o = c_x if adj_x else r_x\nc_o = r_y if adj_y else c_y\n```\n\n\u003cbr /\u003e\n\nIt is computed as: \n\n```scdoc\noutput[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])\n```\n\n\u003cbr /\u003e\n\n*NOTE* : [BatchMatMulV2](/versions/r1.15/api_docs/cc/class/tensorflow/ops/batch-mat-mul-v2#classtensorflow_1_1ops_1_1_batch_mat_mul_v2) supports broadcasting in the batch dimensions. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html).\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- x: 2-D or higher with shape `[..., r_x, c_x]`.\n- y: 2-D or higher with shape `[..., r_y, c_y]`.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/batch-mat-mul-v2/attrs#structtensorflow_1_1ops_1_1_batch_mat_mul_v2_1_1_attrs)):\n\n- adj_x: If `True`, adjoint the slices of `x`. Defaults to `False`.\n- adj_y: If `True`, adjoint the slices of `y`. Defaults to `False`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 3-D or higher with shape `[..., r_o, c_o]`\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [BatchMatMulV2](#classtensorflow_1_1ops_1_1_batch_mat_mul_v2_1a72c2f4ad83e7c11063fadaf661ec6d54)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` y)` ||\n| [BatchMatMulV2](#classtensorflow_1_1ops_1_1_batch_mat_mul_v2_1a6990e4599f21b54bb5f18572d215fcb1)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` y, const `[BatchMatMulV2::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/batch-mat-mul-v2/attrs#structtensorflow_1_1ops_1_1_batch_mat_mul_v2_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_batch_mat_mul_v2_1a6b83c78f1764f9f38262039680f75f48) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_batch_mat_mul_v2_1ac477c6e218d7285987ba896599db161e) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_batch_mat_mul_v2_1a11c6e4f79b4fbd6ce36ecbc3c84c1e6e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_batch_mat_mul_v2_1af48144aa8d3a20f660281a87abccb7b8)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_batch_mat_mul_v2_1a807920b129cb268198f13fa48d55d9b7)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|\n| [AdjX](#classtensorflow_1_1ops_1_1_batch_mat_mul_v2_1a8f28eaff740f7852929cd5e69f82196d)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/batch-mat-mul-v2/attrs#structtensorflow_1_1ops_1_1_batch_mat_mul_v2_1_1_attrs) |\n| [AdjY](#classtensorflow_1_1ops_1_1_batch_mat_mul_v2_1a76e0c3ea406e4d375518505611ff3358)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/batch-mat-mul-v2/attrs#structtensorflow_1_1ops_1_1_batch_mat_mul_v2_1_1_attrs) |\n\n| ### Structs ||\n|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::BatchMatMulV2::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/batch-mat-mul-v2/attrs) | Optional attribute setters for [BatchMatMulV2](/versions/r1.15/api_docs/cc/class/tensorflow/ops/batch-mat-mul-v2#classtensorflow_1_1ops_1_1_batch_mat_mul_v2). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### BatchMatMulV2\n\n```gdscript\n BatchMatMulV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x,\n ::tensorflow::Input y\n)\n``` \n\n### BatchMatMulV2\n\n```gdscript\n BatchMatMulV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x,\n ::tensorflow::Input y,\n const BatchMatMulV2::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### AdjX\n\n```text\nAttrs AdjX(\n bool x\n)\n``` \n\n### AdjY\n\n```text\nAttrs AdjY(\n bool x\n)\n```"]]