Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: CropAndResizeGradBoxes
#include <image_ops.h>
Crop_and_resize işleminin giriş kutusu tensörüne göre gradyanını hesaplar.
Özet
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- dereceler: 4 boyutlu bir şekil tensörü
[num_boxes, crop_height, crop_width, depth]
. - resim: 4 boyutlu bir şekil tensörü
[batch, image_height, image_width, depth]
. Hem image_height
hem de image_width
pozitif olması gerekir. - kutular:
[num_boxes, 4]
şeklindeki 2 boyutlu tensör. Tensörün i
satırı box_ind[i]
görüntüsündeki bir kutunun koordinatlarını belirtir ve normalleştirilmiş koordinatlar [y1, x1, y2, x2]
ile belirtilir. y
normalleştirilmiş bir koordinat değeri y * (image_height - 1)
adresindeki görüntü koordinatına eşlenir, böylece normalleştirilmiş görüntü yüksekliğinin [0, 1]
aralığı, görüntü yüksekliği koordinatlarında '[0, image_height - 1]'e eşlenir. y1 > y2'ye izin veririz; bu durumda örneklenen kırpma, orijinal görüntünün yukarı-aşağı çevrilmiş versiyonu olur. Genişlik boyutu da benzer şekilde ele alınır. [0, 1]
aralığının dışındaki normalleştirilmiş koordinatlara izin verilir; bu durumda giriş görüntüsü değerlerini tahmin etmek için extrapolation_value
kullanırız. - box_ind:
[0, batch)
içindeki int32 değerlerine sahip [num_boxes]
şeklindeki 1 boyutlu tensör. box_ind[i]
değeri, i
kutunun başvurduğu görüntüyü belirtir.
İsteğe bağlı özellikler (bkz. Attrs
):
- yöntem: Enterpolasyon yöntemini belirten bir dize. Şimdilik yalnızca 'bilinear' desteklenmektedir.
İade:
-
Output
: [num_boxes, 4]
şeklinde bir 2 boyutlu tensör.
Genel statik işlevler |
---|
Method (StringPiece x) | |
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Genel statik işlevler
Yöntem
Attrs Method(
StringPiece x
)
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-25 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::CropAndResizeGradBoxes Class Reference\n\ntensorflow::ops::CropAndResizeGradBoxes\n=======================================\n\n`#include \u003cimage_ops.h\u003e`\n\nComputes the gradient of the crop_and_resize op wrt the input boxes tensor.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- grads: A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.\n- image: A 4-D tensor of shape `[batch, image_height, image_width, depth]`. Both `image_height` and `image_width` need to be positive.\n- boxes: A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor specifies the coordinates of a box in the `box_ind[i]` image and is specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image height is mapped to \\`\\[0, image_height - 1\\] in image height coordinates. We do allow y1 \\\u003e y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the `[0, 1]` range are allowed, in which case we use `extrapolation_value` to extrapolate the input image values.\n- box_ind: A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`. The value of `box_ind[i]` specifies the image that the `i`-th box refers to.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-boxes/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1_1_attrs)):\n\n- method: A string specifying the interpolation method. Only 'bilinear' is supported for now.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A 2-D tensor of shape `[num_boxes, 4]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [CropAndResizeGradBoxes](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1a7396286fdb983072f2291a1b8e42dd72)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grads, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind)` ||\n| [CropAndResizeGradBoxes](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1acb0082fa9451e89cacb7f33ec41ea71f)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grads, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind, const `[CropAndResizeGradBoxes::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-boxes/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1adaf9854fc96b856511f2dc5d98f970d9) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1aa787d871d3d2a6d4db396a999df47866) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1adc2ba9c9ad9db25b155a2c4d257cf17b)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1a31b45934d809d1528e55f1b32e7c4a42)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1aaffb6597bcce6544556871610729fbf6)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Method](#classtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1a40631e53f11d856a516a8a73adce1646)`(StringPiece x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-boxes/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes_1_1_attrs) |\n\n| ### Structs ||\n|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::CropAndResizeGradBoxes::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/crop-and-resize-grad-boxes/attrs) | Optional attribute setters for [CropAndResizeGradBoxes](/versions/r2.0/api_docs/cc/class/tensorflow/ops/crop-and-resize-grad-boxes#classtensorflow_1_1ops_1_1_crop_and_resize_grad_boxes). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### CropAndResizeGradBoxes\n\n```gdscript\n CropAndResizeGradBoxes(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input grads,\n ::tensorflow::Input image,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind\n)\n``` \n\n### CropAndResizeGradBoxes\n\n```gdscript\n CropAndResizeGradBoxes(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input grads,\n ::tensorflow::Input image,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind,\n const CropAndResizeGradBoxes::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Method\n\n```text\nAttrs Method(\n StringPiece x\n)\n```"]]