Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: RastgeleGama
#include <random_ops.h>
Alfa ile tanımlanan Gama dağılımlarından rastgele değerler çıkarır.
Özet
Bu operasyon Marsaglia ve arkadaşlarının algoritmasını kullanıyor. tekdüze ve normal rastgele değişken çiftlerinden dönüşüm-reddetme yoluyla örnekler elde etmek. Bkz. http://dl.acm.org/citation.cfm?id=358414
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- şekil: 1 boyutlu tamsayı tensörü. Alfa'da verilen şekil parametreleriyle tanımlanan her dağılımdan çizilecek bağımsız örneklerin şekli.
- alfa: Her skalerin ilgili gama dağılımını tanımlayan bir "şekil" parametresi olduğu bir tensör.
İsteğe bağlı özellikler (bkz. Attrs
):
- tohum:
seed
veya seed2
biri sıfırdan farklı olarak ayarlanırsa, rastgele sayı üreteci verilen tohum tarafından tohumlanır. Aksi takdirde rastgele bir tohumla tohumlanır. - tohum2: Tohum çarpışmasını önlemek için ikinci bir tohum.
İade:
-
Output
: Şekil shape + shape(alpha)
olan bir tensör. Her dilim [:, ..., :, i0, i1, ...iN]
alpha[i0, i1, ...iN]
için çizilmiş örnekleri içerir. Çıktının türü alfanın türüyle eşleşir.
Genel statik işlevler |
---|
Seed (int64 x) | |
Seed2 (int64 x) | |
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Genel statik işlevler
Tohum
Attrs Seed(
int64 x
)
Tohum2
Attrs Seed2(
int64 x
)
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::RandomGamma Class Reference\n\ntensorflow::ops::RandomGamma\n============================\n\n`#include \u003crandom_ops.h\u003e`\n\nOutputs random values from the Gamma distribution(s) described by alpha.\n\nSummary\n-------\n\nThis op uses the algorithm by Marsaglia et al. to acquire samples via transformation-rejection from pairs of uniform and normal random variables. See \u003chttp://dl.acm.org/citation.cfm?id=358414\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- shape: 1-D integer tensor. Shape of independent samples to draw from each distribution described by the shape parameters given in alpha.\n- alpha: A tensor in which each scalar is a \"shape\" parameter describing the associated gamma distribution.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs)):\n\n- seed: If either `seed` or `seed2` are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed.\n- seed2: A second seed to avoid seed collision.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A tensor with shape `shape + shape(alpha)`. Each slice `[:, ..., :, i0, i1, ...iN]` contains the samples drawn for `alpha[i0, i1, ...iN]`. The dtype of the output matches the dtype of alpha.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [RandomGamma](#classtensorflow_1_1ops_1_1_random_gamma_1a54b3819de158eaa8e1f4dd2e09c38350)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` alpha)` ||\n| [RandomGamma](#classtensorflow_1_1ops_1_1_random_gamma_1afb5a4dcc9f3b7849c9ccf8e49233c658)`(const ::`[tensorflow::Scope](/versions/r2.0/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r2.0/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` alpha, const `[RandomGamma::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_random_gamma_1a3442325c98888cd41398f85c8dc7215d) | [Operation](/versions/r2.0/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_random_gamma_1ae108904c41339fe8cced748589ef2622) | `::`[tensorflow::Output](/versions/r2.0/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_random_gamma_1a0a8429580ed9eda5d1b850c9fc9cd7c6)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_random_gamma_1ad5e60091b7438c54f6d2457fccba06ed)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_random_gamma_1a20b55a813e49ae84f48cd79c87285409)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|\n| [Seed](#classtensorflow_1_1ops_1_1_random_gamma_1a62800c601cb18e766b0f41f18f86f335)`(int64 x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs) |\n| [Seed2](#classtensorflow_1_1ops_1_1_random_gamma_1a42984b9ff3911c8867903be5bcd97ac7)`(int64 x)` | [Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs#structtensorflow_1_1ops_1_1_random_gamma_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::RandomGamma::Attrs](/versions/r2.0/api_docs/cc/struct/tensorflow/ops/random-gamma/attrs) | Optional attribute setters for [RandomGamma](/versions/r2.0/api_docs/cc/class/tensorflow/ops/random-gamma#classtensorflow_1_1ops_1_1_random_gamma). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### RandomGamma\n\n```gdscript\n RandomGamma(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input shape,\n ::tensorflow::Input alpha\n)\n``` \n\n### RandomGamma\n\n```gdscript\n RandomGamma(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input shape,\n ::tensorflow::Input alpha,\n const RandomGamma::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Seed\n\n```text\nAttrs Seed(\n int64 x\n)\n``` \n\n### Seed2\n\n```text\nAttrs Seed2(\n int64 x\n)\n```"]]