View source on GitHub
|
Reparameterized Layer variable.
tfc.layers.Parameter(
name=None
)
This object represents a parameter of a tf.keras.layer.Layer object which
isn't directly stored in a tf.Variable, but can be represented as a function
(of any number of tf.Variable attributes).
Attributes | |
|---|---|
name
|
Returns the name of this module as passed or determined in the ctor. |
name_scope
|
Returns a tf.name_scope instance for this class.
|
non_trainable_variables
|
Sequence of non-trainable variables owned by this module and its submodules. |
submodules
|
Sequence of all sub-modules.
Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).
|
trainable_variables
|
Sequence of trainable variables owned by this module and its submodules. |
variables
|
Sequence of variables owned by this module and its submodules. |
Methods
get_config
@abc.abstractmethodget_config()
Returns the configuration of the Parameter.
get_weights
get_weights()
set_weights
set_weights(
weights
)
with_name_scope
@classmethodwith_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):@tf.Module.with_name_scopedef __call__(self, x):if not hasattr(self, 'w'):self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))return tf.matmul(x, self.w)
Using the above module would produce tf.Variables and tf.Tensors whose
names included the module name:
mod = MyModule()mod(tf.ones([1, 2]))<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>mod.w<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,numpy=..., dtype=float32)>
| Args | |
|---|---|
method
|
The method to wrap. |
| Returns | |
|---|---|
| The original method wrapped such that it enters the module's name scope. |
__call__
@abc.abstractmethod__call__( compute_dtype=None )
Computes and returns the parameter value as a tf.Tensor.
View source on GitHub