View source on GitHub |
The base configuration for building datasets.
Inherits From: DataConfig
, Config
, ParamsDict
tfm.vision.configs.video_classification.DataConfig(
default_params: dataclasses.InitVar[Optional[Mapping[str, Any]]] = None,
restrictions: dataclasses.InitVar[Optional[List[str]]] = None,
input_path: Union[str, tfm.hyperparams.Config
] = '',
tfds_name: Union[str, tfm.hyperparams.Config
] = '',
tfds_split: str = '',
global_batch_size: int = 128,
is_training: bool = True,
drop_remainder: bool = True,
shuffle_buffer_size: int = 64,
cache: bool = False,
cycle_length: int = 10,
block_length: int = 1,
deterministic: Optional[bool] = None,
sharding: bool = True,
enable_tf_data_service: bool = False,
tf_data_service_address: Optional[str] = None,
tf_data_service_job_name: Optional[str] = None,
tfds_data_dir: str = '',
tfds_as_supervised: bool = False,
tfds_skip_decoding_feature: str = '',
enable_shared_tf_data_service_between_parallel_trainers: bool = False,
apply_tf_data_service_before_batching: bool = False,
trainer_id: Optional[str] = None,
seed: Optional[int] = None,
prefetch_buffer_size: Optional[int] = None,
autotune_algorithm: Optional[str] = None,
name: Optional[str] = None,
file_type: Optional[str] = 'tfrecord',
compressed_input: bool = False,
split: str = 'train',
variant_name: Optional[str] = None,
feature_shape: Tuple[int, ...] = tfm.vision.configs.video_classification.DataConfig.feature_shape
,
temporal_stride: int = 1,
random_stride_range: int = 0,
num_test_clips: int = 1,
num_test_crops: int = 1,
num_classes: int = -1,
num_examples: int = -1,
data_format: str = 'channels_last',
dtype: str = 'float32',
label_dtype: str = 'int32',
one_hot: bool = True,
min_image_size: int = 256,
zero_centering_image: bool = False,
is_multilabel: bool = False,
output_audio: bool = False,
audio_feature: str = '',
audio_feature_shape: Tuple[int, ...] = tfm.vision.configs.video_classification.DataConfig.audio_feature_shape
,
aug_min_aspect_ratio: float = 0.5,
aug_max_aspect_ratio: float = 2.0,
aug_min_area_ratio: float = 0.49,
aug_max_area_ratio: float = 1.0,
aug_type: Optional[tfm.vision.configs.common.Augmentation
] = None,
mixup_and_cutmix: Optional[tfm.vision.configs.common.MixupAndCutmix
] = None,
image_field_key: str = 'image/encoded',
label_field_key: str = 'clip/label/index',
input_image_format: str = 'jpeg'
)
Methods
as_dict
as_dict()
Returns a dict representation of params_dict.ParamsDict.
For the nested params_dict.ParamsDict, a nested dict will be returned.
from_args
@classmethod
from_args( *args, **kwargs )
Builds a config from the given list of arguments.
from_json
@classmethod
from_json( file_path: str )
Wrapper for from_yaml
.
from_yaml
@classmethod
from_yaml( file_path: str )
get
get(
key, value=None
)
Accesses through built-in dictionary get method.
lock
lock()
Makes the ParamsDict immutable.
override
override(
override_params, is_strict=True
)
Override the ParamsDict with a set of given params.
Args | |
---|---|
override_params
|
a dict or a ParamsDict specifying the parameters to be overridden. |
is_strict
|
a boolean specifying whether override is strict or not. If
True, keys in override_params must be present in the ParamsDict. If
False, keys in override_params can be different from what is currently
defined in the ParamsDict. In this case, the ParamsDict will be extended
to include the new keys.
|
replace
replace(
**kwargs
)
Overrides/returns a unlocked copy with the current config unchanged.
validate
validate()
Validate the parameters consistency based on the restrictions.
This method validates the internal consistency using the pre-defined list of restrictions. A restriction is defined as a string which specifies a binary operation. The supported binary operations are {'==', '!=', '<', '<=', '>', '>='}. Note that the meaning of these operators are consistent with the underlying Python immplementation. Users should make sure the define restrictions on their type make sense.
For example, for a ParamsDict like the following
a:
a1: 1
a2: 2
b:
bb:
bb1: 10
bb2: 20
ccc:
a1: 1
a3: 3
one can define two restrictions like this ['a.a1 == b.ccc.a1', 'a.a2 <= b.bb.bb2']
What it enforces are | |
---|---|
|
Raises | |
---|---|
KeyError
|
if any of the following happens (1) any of parameters in any of restrictions is not defined in ParamsDict, (2) any inconsistency violating the restriction is found. |
ValueError
|
if the restriction defined in the string is not supported. |
__contains__
__contains__(
key
)
Implements the membership test operator.
__eq__
__eq__(
other
)