Data compression in TensorFlow.
Modules
distributions
module: Distributions, based on tfp.distributions.Distribution
.
entropy_models
module: Entropy models.
layers
module: Layers, based on tf.keras.layers.Layer
.
ops
module: TensorFlow operations and functions.
Classes
class ContinuousBatchedEntropyModel
: Batched entropy model for continuous random variables.
class ContinuousIndexedEntropyModel
: Indexed entropy model for continuous random variables.
class DeepFactorized
: Fully factorized distribution based on neural network cumulative.
class GDN
: Generalized divisive normalization layer.
class GDNParameter
: Nonnegative parameterization as needed for GDN parameters.
class IdentityInitializer
: Initialize to the identity kernel with the given shape.
class LocationScaleIndexedEntropyModel
: Indexed entropy model for location-scale family of random variables.
class MonotonicAdapter
: Adapt a continuous distribution via an ascending monotonic function.
class NoisyDeepFactorized
: DeepFactorized
that is convolved with uniform noise.
class NoisyLaplace
: Laplacian distribution with additive i.i.d. uniform noise.
class NoisyLogistic
: Logistic distribution with additive i.i.d. uniform noise.
class NoisyLogisticMixture
: Mixture of logistic distributions with additive i.i.d. uniform noise.
class NoisyMixtureSameFamily
: Mixture of distributions with additive i.i.d. uniform noise.
class NoisyNormal
: Gaussian distribution with additive i.i.d. uniform noise.
class NoisyNormalMixture
: Mixture of normal distributions with additive i.i.d. uniform noise.
class NoisyRoundedDeepFactorized
: Rounded DeepFactorized
+ uniform noise.
class NoisyRoundedNormal
: Rounded normal distribution + uniform noise.
class NoisySoftRoundedDeepFactorized
: Soft rounded DeepFactorized
+ uniform noise.
class NoisySoftRoundedNormal
: Soft rounded normal distribution + uniform noise.
class PackedTensors
: Packed representation of compressed tensors.
class Parameter
: Reparameterized Layer
variable.
class PowerLawEntropyModel
: Entropy model for power-law distributed random variables.
class RDFTParameter
: RDFT reparameterization of a convolution kernel.
class RoundAdapter
: Continuous density function + round.
class SignalConv1D
: 1D convolution layer.
class SignalConv2D
: 2D convolution layer.
class SignalConv3D
: 3D convolution layer.
class SoftRound
: Applies a differentiable approximation of rounding.
class SoftRoundAdapter
: Differentiable approximation to round.
class SoftRoundConditionalMean
: Conditional mean of inputs given noisy soft rounded values.
class UniformNoiseAdapter
: Additive i.i.d. uniform noise adapter distribution.
class UniversalBatchedEntropyModel
: Batched entropy model model which implements Universal Quantization.
class UniversalIndexedEntropyModel
: Indexed entropy model model which implements Universal Quantization.
class Y4MDataset
: A tf.Dataset
of Y'CbCr video frames from '.y4m' files.
Functions
create_range_decoder(...)
: Creates range decoder objects to be used by EntropyDecode*
ops.
create_range_encoder(...)
: Creates range encoder objects to be used by EntropyEncode*
ops.
entropy_decode_channel(...)
: Decodes the encoded stream inside handle
.
entropy_decode_finalize(...)
: Finalizes the decoding process.
entropy_decode_index(...)
: Decodes the encoded stream inside handle
.
entropy_encode_channel(...)
: Encodes each input in value
.
entropy_encode_finalize(...)
: Finalizes the encoding process and extracts byte stream from the encoder.
entropy_encode_index(...)
: Encodes each input in value
according to a distribution selected by index
.
estimate_tails(...)
: Estimates approximate tail quantiles.
lower_bound(...)
: Same as tf.maximum
, but with helpful gradient for inputs < bound
.
lower_tail(...)
: Approximates lower tail quantile for range coding.
perturb_and_apply(...)
: Perturbs the inputs of a pointwise function.
pmf_to_quantized_cdf(...)
: Converts a PMF into a quantized CDF for range coding.
quantization_offset(...)
: Computes distribution-dependent quantization offset.
round_st(...)
: Straight-through round with optional quantization offset.
run_length_decode(...)
: Decodes data
using run-length coding.
run_length_encode(...)
: Encodes data
using run-length coding.
run_length_gamma_decode(...)
: Decodes data
using run-length and Elias gamma coding.
run_length_gamma_encode(...)
: Encodes data
using run-length and Elias gamma coding.
same_padding_for_kernel(...)
: Determine correct amount of padding for same
convolution.
soft_round(...)
: Differentiable approximation to round
.
soft_round_conditional_mean(...)
: Conditional mean of inputs given noisy soft rounded values.
soft_round_inverse(...)
: Inverse of soft_round
.
stochastic_round(...)
: Rounds inputs / step_size
stochastically.
upper_bound(...)
: Same as tf.minimum
, but with helpful gradient for inputs > bound
.
upper_tail(...)
: Approximates upper tail quantile for range coding.