Thanks for tuning in to Google I/O. View all sessions on demandWatch on demand

FusedBatchNormV3

public final class FusedBatchNormV3

Batch normalization.

Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". The size of 1D Tensors matches the dimension C of the 4D Tensors.

Nested Classes

class FusedBatchNormV3.Options Optional attributes for FusedBatchNormV3

Public Methods

Output <U>
batchMean ()
A 1D Tensor for the computed batch mean, to be used by TensorFlow to compute the running mean.
Output <U>
batchVariance ()
A 1D Tensor for the computed batch variance, to be used by TensorFlow to compute the running variance.
static <T extends Number, U extends Number> FusedBatchNormV3 <T, U>
create ( Scope scope, Operand <T> x, Operand <U> scale, Operand <U> offset, Operand <U> mean, Operand <U> variance, Options... options)
Factory method to create a class wrapping a new FusedBatchNormV3 operation.
static FusedBatchNormV3.Options
dataFormat (String dataFormat)
static FusedBatchNormV3.Options
epsilon (Float epsilon)
static FusedBatchNormV3.Options
exponentialAvgFactor (Float exponentialAvgFactor)
static FusedBatchNormV3.Options
isTraining (Boolean isTraining)
Output <U>
reserveSpace1 ()
A 1D Tensor for the computed batch mean, to be reused in the gradient computation.
Output <U>
reserveSpace2 ()
A 1D Tensor for the computed batch variance (inverted variance in the cuDNN case), to be reused in the gradient computation.
Output <U>
reserveSpace3 ()
A 1D Tensor for some intermediate results, to be reused in the gradient computation for better efficiency.
Output <T>
y ()
A 4D Tensor for output data.

Inherited Methods

Public Methods

public Output <U> batchMean ()

A 1D Tensor for the computed batch mean, to be used by TensorFlow to compute the running mean.

public Output <U> batchVariance ()

A 1D Tensor for the computed batch variance, to be used by TensorFlow to compute the running variance.

public static FusedBatchNormV3 <T, U> create ( Scope scope, Operand <T> x, Operand <U> scale, Operand <U> offset, Operand <U> mean, Operand <U> variance, Options... options)

Factory method to create a class wrapping a new FusedBatchNormV3 operation.

Parameters
scope current scope
x A 4D Tensor for input data.
scale A 1D Tensor for scaling factor, to scale the normalized x.
offset A 1D Tensor for offset, to shift to the normalized x.
mean A 1D Tensor for population mean. Used for inference only; must be empty for training.
variance A 1D Tensor for population variance. Used for inference only; must be empty for training.
options carries optional attributes values
Returns
  • a new instance of FusedBatchNormV3

public static FusedBatchNormV3.Options dataFormat (String dataFormat)

Parameters
dataFormat The data format for x and y. Either "NHWC" (default) or "NCHW".

public static FusedBatchNormV3.Options epsilon (Float epsilon)

Parameters
epsilon A small float number added to the variance of x.

public static FusedBatchNormV3.Options exponentialAvgFactor (Float exponentialAvgFactor)

public static FusedBatchNormV3.Options isTraining (Boolean isTraining)

Parameters
isTraining A bool value to indicate the operation is for training (default) or inference.

public Output <U> reserveSpace1 ()

A 1D Tensor for the computed batch mean, to be reused in the gradient computation.

public Output <U> reserveSpace2 ()

A 1D Tensor for the computed batch variance (inverted variance in the cuDNN case), to be reused in the gradient computation.

public Output <U> reserveSpace3 ()

A 1D Tensor for some intermediate results, to be reused in the gradient computation for better efficiency.

public Output <T> y ()

A 4D Tensor for output data.