Attend the Women in ML Symposium on December 7 Register now

ReadVariableXlaSplitND

public final class ReadVariableXlaSplitND

Splits resource variable input tensor across all dimensions.

An op which splits the resource variable input tensor based on the given num_splits attribute, pads slices optionally, and returned the slices. Slices are returned in row-major order.

This op may be generated via the TPU bridge.

For example, with `input` tensor:

[[0, 1, 2],
  [3, 4, 5],
  [6, 7, 8]]
 
`num_splits`:
[2, 2]
 
and `paddings`:
[1, 1]
 
the expected `outputs` is:
[[0, 1],
  [3, 4]]
 [[2, 0],
  [5, 0]]
 [[6, 7],
  [0, 0]]
 [[8, 0],
  [0, 0]]
 

Nested Classes

class ReadVariableXlaSplitND.Options Optional attributes for ReadVariableXlaSplitND  

Public Methods

static <T> ReadVariableXlaSplitND<T>
create(Scope scope, Operand<?> resource, Class<T> T, Long N, List<Long> numSplits, Options... options)
Factory method to create a class wrapping a new ReadVariableXlaSplitND operation.
Iterator<Operand<T>>
List<Output<T>>
static ReadVariableXlaSplitND.Options
paddings(List<Long> paddings)

Inherited Methods

Public Methods

public static ReadVariableXlaSplitND<T> create (Scope scope, Operand<?> resource, Class<T> T, Long N, List<Long> numSplits, Options... options)

Factory method to create a class wrapping a new ReadVariableXlaSplitND operation.

Parameters
scope current scope
resource Resource variable of input tensor to split across all dimensions. } out_arg { name: "outputs" description: <
numSplits Number of ways to split per dimension. Shape dimensions must be evenly divisible.
options carries optional attributes values
Returns
  • a new instance of ReadVariableXlaSplitND

public Iterator<Operand<T>> iterator ()

public List<Output<T>> outputs ()

public static ReadVariableXlaSplitND.Options paddings (List<Long> paddings)

Parameters
paddings Optional list of right paddings per dimension of input tensor to apply before splitting. This can be used to make a dimension evenly divisible.