Module: tf.compat.v1.estimator.experimental
Stay organized with collections
Save and categorize content based on your preferences.
Public API for tf.estimator.experimental namespace.
Classes
class InMemoryEvaluatorHook
: Hook to run evaluation in training without a checkpoint.
class KMeans
: An Estimator for K-Means clustering.
class LinearSDCA
: Stochastic Dual Coordinate Ascent helper for linear estimators.
Functions
build_raw_supervised_input_receiver_fn(...)
: Build a supervised_input_receiver_fn for raw features and labels.
call_logit_fn(...)
: Calls logit_fn (experimental).
dnn_logit_fn_builder(...)
: Function builder for a dnn logit_fn.
linear_logit_fn_builder(...)
: Function builder for a linear logit_fn.
make_early_stopping_hook(...)
: Creates early-stopping hook.
make_stop_at_checkpoint_step_hook(...)
: Creates a proper StopAtCheckpointStepHook based on chief status.
stop_if_higher_hook(...)
: Creates hook to stop if the given metric is higher than the threshold.
stop_if_lower_hook(...)
: Creates hook to stop if the given metric is lower than the threshold.
stop_if_no_decrease_hook(...)
: Creates hook to stop if metric does not decrease within given max steps.
stop_if_no_increase_hook(...)
: Creates hook to stop if metric does not increase within given max steps.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# Module: tf.compat.v1.estimator.experimental\n\n\u003cbr /\u003e\n\nPublic API for tf.estimator.experimental namespace.\n\nClasses\n-------\n\n[`class InMemoryEvaluatorHook`](../../../../tf/estimator/experimental/InMemoryEvaluatorHook): Hook to run evaluation in training without a checkpoint.\n\n[`class KMeans`](../../../../tf/compat/v1/estimator/experimental/KMeans): An Estimator for K-Means clustering.\n\n[`class LinearSDCA`](../../../../tf/estimator/experimental/LinearSDCA): Stochastic Dual Coordinate Ascent helper for linear estimators.\n\nFunctions\n---------\n\n[`build_raw_supervised_input_receiver_fn(...)`](../../../../tf/estimator/experimental/build_raw_supervised_input_receiver_fn): Build a supervised_input_receiver_fn for raw features and labels.\n\n[`call_logit_fn(...)`](../../../../tf/estimator/experimental/call_logit_fn): Calls logit_fn (experimental).\n\n[`dnn_logit_fn_builder(...)`](../../../../tf/compat/v1/estimator/experimental/dnn_logit_fn_builder): Function builder for a dnn logit_fn.\n\n[`linear_logit_fn_builder(...)`](../../../../tf/compat/v1/estimator/experimental/linear_logit_fn_builder): Function builder for a linear logit_fn.\n\n[`make_early_stopping_hook(...)`](../../../../tf/estimator/experimental/make_early_stopping_hook): Creates early-stopping hook.\n\n[`make_stop_at_checkpoint_step_hook(...)`](../../../../tf/estimator/experimental/make_stop_at_checkpoint_step_hook): Creates a proper StopAtCheckpointStepHook based on chief status.\n\n[`stop_if_higher_hook(...)`](../../../../tf/estimator/experimental/stop_if_higher_hook): Creates hook to stop if the given metric is higher than the threshold.\n\n[`stop_if_lower_hook(...)`](../../../../tf/estimator/experimental/stop_if_lower_hook): Creates hook to stop if the given metric is lower than the threshold.\n\n[`stop_if_no_decrease_hook(...)`](../../../../tf/estimator/experimental/stop_if_no_decrease_hook): Creates hook to stop if metric does not decrease within given max steps.\n\n[`stop_if_no_increase_hook(...)`](../../../../tf/estimator/experimental/stop_if_no_increase_hook): Creates hook to stop if metric does not increase within given max steps."]]