Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tf.keras.losses.SquaredHinge

Computes the squared hinge loss between `y_true` and `y_pred`.

`loss = square(maximum(1 - y_true * y_pred, 0))`

`y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.

#### Usage:

``````sh = tf.keras.losses.SquaredHinge()
loss = sh([-1., 1., 1.], [0.6, -0.7, -0.5])

# loss = (max(0, 1 - y_true * y_pred))^2 = [1.6^2 + 1.7^2 + 1.5^2] / 3

print('Loss: ', loss.numpy())  # Loss: 2.566666
``````

Usage with the `compile` API:

``````model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.SquaredHinge())
``````

## Methods

### `from_config`

View source

Instantiates a `Loss` from its config (output of `get_config()`).

Args
`config` Output of `get_config()`.

Returns
A `Loss` instance.

View source

### `__call__`

View source

Invokes the `Loss` instance.

Args
`y_true` Ground truth values. shape = `[batch_size, d0, .. dN]`
`y_pred` The predicted values. shape = `[batch_size, d0, .. dN]`
`sample_weight` Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.)

Returns
Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.)

Raises
`ValueError` If the shape of `sample_weight` is invalid.

[]
[]