tf.feature_column.make_parse_example_spec
Creates parsing spec dictionary from input feature_columns.
tf.feature_column.make_parse_example_spec(
feature_columns
)
The returned dictionary can be used as arg 'features' in
tf.io.parse_example
.
Typical usage example:
# Define features and transformations
feature_a = tf.feature_column.categorical_column_with_vocabulary_file(...)
feature_b = tf.feature_column.numeric_column(...)
feature_c_bucketized = tf.feature_column.bucketized_column(
tf.feature_column.numeric_column("feature_c"), ...)
feature_a_x_feature_c = tf.feature_column.crossed_column(
columns=["feature_a", feature_c_bucketized], ...)
feature_columns = set(
[feature_b, feature_c_bucketized, feature_a_x_feature_c])
features = tf.io.parse_example(
serialized=serialized_examples,
features=tf.feature_column.make_parse_example_spec(feature_columns))
For the above example, make_parse_example_spec would return the dict:
{
"feature_a": parsing_ops.VarLenFeature(tf.string),
"feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32),
"feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32)
}
Args |
feature_columns
|
An iterable containing all feature columns. All items
should be instances of classes derived from FeatureColumn .
|
Returns |
A dict mapping each feature key to a FixedLenFeature or VarLenFeature
value.
|
Raises |
ValueError
|
If any of the given feature_columns is not a FeatureColumn
instance.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[]]