TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
A LearningRateSchedule that uses a cosine decay schedule with restarts.
Inherits From: LearningRateSchedule
tf.keras.experimental.CosineDecayRestarts(
    initial_learning_rate, first_decay_steps, t_mul=2.0, m_mul=1.0, alpha=0.0,
    name=None
)
Args | |
|---|---|
initial_learning_rate
 | 
A scalar float32 or float64 Tensor or a Python
number. The initial learning rate.
 | 
first_decay_steps
 | 
A scalar int32 or int64 Tensor or a Python
number. Number of steps to decay over.
 | 
t_mul
 | 
A scalar float32 or float64 Tensor or a Python number.
Used to derive the number of iterations in the i-th period
 | 
m_mul
 | 
A scalar float32 or float64 Tensor or a Python number.
Used to derive the initial learning rate of the i-th period:
 | 
alpha
 | 
A scalar float32 or float64 Tensor or a Python number.
Minimum learning rate value as a fraction of the initial_learning_rate.
 | 
name
 | 
String. Optional name of the operation. Defaults to 'SGDRDecay'. | 
Methods
from_config
@classmethodfrom_config( config )
Instantiates a LearningRateSchedule from its config.
| Args | |
|---|---|
config
 | 
Output of get_config().
 | 
| Returns | |
|---|---|
A LearningRateSchedule instance.
 | 
get_config
get_config()
__call__
__call__(
    step
)
Call self as a function.
  TensorFlow 1 version
    View source on GitHub