Decodes each string in input into a sequence of Unicode code points.
tf.strings.unicode_decode(
    input, input_encoding, errors='replace', replacement_char=65533,
    replace_control_characters=False, name=None
)
result[i1...iN, j] is the Unicode codepoint for the jth character in
input[i1...iN], when decoded using input_encoding.
Args | 
input
 | 
An N dimensional potentially ragged string tensor with shape
[D1...DN].  N must be statically known.
 | 
input_encoding
 | 
String name for the unicode encoding that should be used to
decode each string.
 | 
errors
 | 
Specifies the response when an input string can't be converted
using the indicated encoding. One of:
'strict': Raise an exception for any illegal substrings. 
'replace': Replace illegal substrings with replacement_char. 
'ignore': Skip illegal substrings.
  | 
replacement_char
 | 
The replacement codepoint to be used in place of invalid
substrings in input when errors='replace'; and in place of C0 control
characters in input when replace_control_characters=True.
 | 
replace_control_characters
 | 
Whether to replace the C0 control characters
(U+0000 - U+001F) with the replacement_char.
 | 
name
 | 
A name for the operation (optional).
 | 
Returns | 
A N+1 dimensional int32 tensor with shape [D1...DN, (num_chars)].
The returned tensor is a tf.Tensor if input is a scalar, or a
tf.RaggedTensor otherwise.
 | 
Example:
input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
tf.strings.unicode_decode(input, 'UTF-8').to_list()
[[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]