TensorFlow multi-step profiler.
tf.compat.v1.profiler.Profiler(
    graph=None, op_log=None
)
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/README.md
Typical use case:
  # Currently we are only allowed to create 1 profiler per process.
  profiler = Profiler(sess.graph)
  for i in xrange(total_steps):
    if i % 10000 == 0:
      run_meta = tf.compat.v1.RunMetadata()
      _ = sess.run(...,
                   options=tf.compat.v1.RunOptions(
                       trace_level=tf.RunOptions.FULL_TRACE),
                   run_metadata=run_meta)
      profiler.add_step(i, run_meta)
      # Profile the parameters of your model.
      profiler.profile_name_scope(options=(option_builder.ProfileOptionBuilder
          .trainable_variables_parameter()))
      # Or profile the timing of your model operations.
      opts = option_builder.ProfileOptionBuilder.time_and_memory()
      profiler.profile_operations(options=opts)
      # Or you can generate a timeline:
      opts = (option_builder.ProfileOptionBuilder(
              option_builder.ProfileOptionBuilder.time_and_memory())
              .with_step(i)
              .with_timeline_output(filename).build())
      profiler.profile_graph(options=opts)
    else:
      _ = sess.run(...)
  # Auto detect problems and generate advice.
  profiler.advise()
Args | 
graph
 | 
tf.Graph. If None and eager execution is not enabled, use
default graph.
 | 
op_log
 | 
optional. tensorflow::tfprof::OpLogProto proto. Used to define
extra op types.
 | 
Methods
add_step
View source
add_step(
    step, run_meta
)
Add statistics of a step.
| Args | 
step
 | 
int, An id used to group one or more different run_meta together.
When profiling with the profile_xxx APIs, user can use the step
id in the options to profile these run_meta together.
 | 
run_meta
 | 
RunMetadata proto that contains statistics of a session run.
 | 
advise
View source
advise(
    options
)
Automatically detect problems and generate reports.
| Args | 
options
 | 
A dict of options. See ALL_ADVICE example above.
 | 
| Returns | 
| 
A Advise proto that conains the reports from all checkers.
 | 
profile_graph
View source
profile_graph(
    options
)
Profile the statistics of graph nodes, organized by dataflow graph.
| Args | 
options
 | 
A dict of options. See core/profiler/g3doc/options.md.
 | 
| Returns | 
| 
a GraphNodeProto that records the results.
 | 
profile_name_scope
View source
profile_name_scope(
    options
)
Profile the statistics of graph nodes, organized by name scope.
| Args | 
options
 | 
A dict of options. See core/profiler/g3doc/options.md.
 | 
| Returns | 
| 
a GraphNodeProto that records the results.
 | 
profile_operations
View source
profile_operations(
    options
)
Profile the statistics of the Operation types (e.g. MatMul, Conv2D).
| Args | 
options
 | 
A dict of options. See core/profiler/g3doc/options.md.
 | 
| Returns | 
| 
a MultiGraphNodeProto that records the results.
 | 
profile_python
View source
profile_python(
    options
)
Profile the statistics of the Python codes.
By default, it shows the call stack from root. To avoid
  redundant output, you may use options to filter as below
    options['show_name_regexes'] = ['.my_code.py.']
| Args | 
options
 | 
A dict of options. See core/profiler/g3doc/options.md.
 | 
| Returns | 
| 
a MultiGraphNodeProto that records the results.
 | 
serialize_to_string
View source
serialize_to_string()
Serialize the ProfileProto to a binary string.
Users can write it to file for offline analysis by tfprof commandline
  or graphical interface.
| Returns | 
| 
ProfileProto binary string.
 |