tf.keras.activations.exponential
Stay organized with collections
Save and categorize content based on your preferences.
Exponential activation function.
tf.keras.activations.exponential(
x
)
For example:
a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)
b = tf.keras.activations.exponential(a)
b.numpy()
array([ 0.04978707, 0.36787945, 1. , 2.7182817 , 20.085537 ],
dtype=float32)
Arguments |
x
|
Input tensor.
|
Returns |
Tensor with exponential activation: exp(x) . Tensor will be of same
shape and dtype of input x .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.activations.exponential\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/activations/exponential) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/activations.py#L276-L295) |\n\nExponential activation function.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.activations.exponential`](/api_docs/python/tf/keras/activations/exponential)\n\n\u003cbr /\u003e\n\n tf.keras.activations.exponential(\n x\n )\n\n#### For example:\n\n a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)\n b = tf.keras.activations.exponential(a)\n b.numpy()\n array([ 0.04978707, 0.36787945, 1. , 2.7182817 , 20.085537 ],\n dtype=float32)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|-----|---------------|\n| `x` | Input tensor. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Tensor with exponential activation: `exp(x)`. Tensor will be of same shape and dtype of input `x`. ||\n\n\u003cbr /\u003e"]]