tf.keras.callbacks.EarlyStopping
Stay organized with collections
Save and categorize content based on your preferences.
Stop training when a monitored quantity has stopped improving.
Inherits From: Callback
tf.keras.callbacks.EarlyStopping(
monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto',
baseline=None, restore_best_weights=False
)
Arguments |
monitor
|
Quantity to be monitored.
|
min_delta
|
Minimum change in the monitored quantity
to qualify as an improvement, i.e. an absolute
change of less than min_delta, will count as no
improvement.
|
patience
|
Number of epochs with no improvement
after which training will be stopped.
|
verbose
|
verbosity mode.
|
mode
|
One of {"auto", "min", "max"} . In min mode,
training will stop when the quantity
monitored has stopped decreasing; in max
mode it will stop when the quantity
monitored has stopped increasing; in auto
mode, the direction is automatically inferred
from the name of the monitored quantity.
|
baseline
|
Baseline value for the monitored quantity.
Training will stop if the model doesn't show improvement over the
baseline.
|
restore_best_weights
|
Whether to restore model weights from
the epoch with the best value of the monitored quantity.
If False, the model weights obtained at the last step of
training are used.
|
Example:
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)
# This callback will stop the training when there is no improvement in
# the validation loss for three consecutive epochs.
model.fit(data, labels, epochs=100, callbacks=[callback],
validation_data=(val_data, val_labels))
Methods
get_monitor_value
View source
get_monitor_value(
logs
)
set_model
View source
set_model(
model
)
set_params
View source
set_params(
params
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.callbacks.EarlyStopping\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/callbacks/EarlyStopping) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/callbacks.py#L1170-L1287) |\n\nStop training when a monitored quantity has stopped improving.\n\nInherits From: [`Callback`](../../../tf/keras/callbacks/Callback)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.callbacks.EarlyStopping`](/api_docs/python/tf/keras/callbacks/EarlyStopping)\n\n\u003cbr /\u003e\n\n tf.keras.callbacks.EarlyStopping(\n monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto',\n baseline=None, restore_best_weights=False\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `monitor` | Quantity to be monitored. |\n| `min_delta` | Minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. |\n| `patience` | Number of epochs with no improvement after which training will be stopped. |\n| `verbose` | verbosity mode. |\n| `mode` | One of `{\"auto\", \"min\", \"max\"}`. In `min` mode, training will stop when the quantity monitored has stopped decreasing; in `max` mode it will stop when the quantity monitored has stopped increasing; in `auto` mode, the direction is automatically inferred from the name of the monitored quantity. |\n| `baseline` | Baseline value for the monitored quantity. Training will stop if the model doesn't show improvement over the baseline. |\n| `restore_best_weights` | Whether to restore model weights from the epoch with the best value of the monitored quantity. If False, the model weights obtained at the last step of training are used. |\n\n\u003cbr /\u003e\n\n#### Example:\n\n callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)\n # This callback will stop the training when there is no improvement in\n # the validation loss for three consecutive epochs.\n model.fit(data, labels, epochs=100, callbacks=[callback],\n validation_data=(val_data, val_labels))\n\nMethods\n-------\n\n### `get_monitor_value`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/callbacks.py#L1280-L1287) \n\n get_monitor_value(\n logs\n )\n\n### `set_model`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/callbacks.py#L465-L466) \n\n set_model(\n model\n )\n\n### `set_params`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/callbacks.py#L462-L463) \n\n set_params(\n params\n )"]]