tf.keras.callbacks.ModelCheckpoint
Stay organized with collections
Save and categorize content based on your preferences.
Save the model after every epoch.
Inherits From: Callback
tf.keras.callbacks.ModelCheckpoint(
filepath, monitor='val_loss', verbose=0, save_best_only=False,
save_weights_only=False, mode='auto', save_freq='epoch', **kwargs
)
filepath
can contain named formatting options,
which will be filled the value of epoch
and
keys in logs
(passed in on_epoch_end
).
For example: if filepath
is weights.{epoch:02d}-{val_loss:.2f}.hdf5
,
then the model checkpoints will be saved with the epoch number and
the validation loss in the filename.
Arguments |
filepath
|
string, path to save the model file.
|
monitor
|
quantity to monitor.
|
verbose
|
verbosity mode, 0 or 1.
|
save_best_only
|
if save_best_only=True , the latest best model according
to the quantity monitored will not be overwritten.
If filepath doesn't contain formatting options like {epoch} then
filepath will be overwritten by each new better model.
|
mode
|
one of {auto, min, max}. If save_best_only=True , the decision to
overwrite the current save file is made based on either the maximization
or the minimization of the monitored quantity. For val_acc , this
should be max , for val_loss this should be min , etc. In auto
mode, the direction is automatically inferred from the name of the
monitored quantity.
|
save_weights_only
|
if True, then only the model's weights will be saved
(model.save_weights(filepath) ), else the full model is saved
(model.save(filepath) ).
|
save_freq
|
'epoch' or integer. When using 'epoch' , the callback saves
the model after each epoch. When using integer, the callback saves the
model at end of a batch at which this many samples have been seen since
last saving. Note that if the saving isn't aligned to epochs, the
monitored metric may potentially be less reliable (it could reflect as
little as 1 batch, since the metrics get reset every epoch). Defaults to
'epoch'
|
**kwargs
|
Additional arguments for backwards compatibility. Possible key
is period .
|
Methods
set_model
View source
set_model(
model
)
set_params
View source
set_params(
params
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.callbacks.ModelCheckpoint\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/callbacks/ModelCheckpoint) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/callbacks.py#L813-L1166) |\n\nSave the model after every epoch.\n\nInherits From: [`Callback`](../../../tf/keras/callbacks/Callback)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.callbacks.ModelCheckpoint`](/api_docs/python/tf/keras/callbacks/ModelCheckpoint)\n\n\u003cbr /\u003e\n\n tf.keras.callbacks.ModelCheckpoint(\n filepath, monitor='val_loss', verbose=0, save_best_only=False,\n save_weights_only=False, mode='auto', save_freq='epoch', **kwargs\n )\n\n`filepath` can contain named formatting options,\nwhich will be filled the value of `epoch` and\nkeys in `logs` (passed in `on_epoch_end`).\n\nFor example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`,\nthen the model checkpoints will be saved with the epoch number and\nthe validation loss in the filename.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `filepath` | string, path to save the model file. |\n| `monitor` | quantity to monitor. |\n| `verbose` | verbosity mode, 0 or 1. |\n| `save_best_only` | if `save_best_only=True`, the latest best model according to the quantity monitored will not be overwritten. If `filepath` doesn't contain formatting options like `{epoch}` then `filepath` will be overwritten by each new better model. |\n| `mode` | one of {auto, min, max}. If `save_best_only=True`, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For `val_acc`, this should be `max`, for `val_loss` this should be `min`, etc. In `auto` mode, the direction is automatically inferred from the name of the monitored quantity. |\n| `save_weights_only` | if True, then only the model's weights will be saved (`model.save_weights(filepath)`), else the full model is saved (`model.save(filepath)`). |\n| `save_freq` | `'epoch'` or integer. When using `'epoch'`, the callback saves the model after each epoch. When using integer, the callback saves the model at end of a batch at which this many samples have been seen since last saving. Note that if the saving isn't aligned to epochs, the monitored metric may potentially be less reliable (it could reflect as little as 1 batch, since the metrics get reset every epoch). Defaults to `'epoch'` |\n| `**kwargs` | Additional arguments for backwards compatibility. Possible key is `period`. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `set_model`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/callbacks.py#L917-L923) \n\n set_model(\n model\n )\n\n### `set_params`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/callbacks.py#L462-L463) \n\n set_params(\n params\n )"]]