tf.keras.losses.BinaryCrossentropy
Stay organized with collections
Save and categorize content based on your preferences.
Computes the cross-entropy loss between true labels and predicted labels.
tf.keras.losses.BinaryCrossentropy(
from_logits=False, label_smoothing=0, reduction=losses_utils.ReductionV2.AUTO,
name='binary_crossentropy'
)
Use this cross-entropy loss when there are only two label classes (assumed to
be 0 and 1). For each example, there should be a single floating-point value
per prediction.
In the snippet below, each of the four examples has only a single
floating-pointing value, and both y_pred
and y_true
have the shape
[batch_size]
.
Usage:
bce = tf.keras.losses.BinaryCrossentropy()
loss = bce([0., 0., 1., 1.], [1., 1., 1., 0.])
print('Loss: ', loss.numpy()) # Loss: 11.522857
Usage with the tf.keras
API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.BinaryCrossentropy())
Args |
from_logits
|
Whether to interpret y_pred as a tensor of
logit values. By default, we assume
that y_pred contains probabilities (i.e., values in [0, 1]).
Note: Using from_logits=True may be more numerically stable.
|
label_smoothing
|
Float in [0, 1]. When 0, no smoothing occurs. When > 0, we
compute the loss between the predicted labels and a smoothed version of
the true labels, where the smoothing squeezes the labels towards 0.5.
Larger values of label_smoothing correspond to heavier smoothing.
|
reduction
|
(Optional) Type of tf.keras.losses.Reduction to apply to loss.
Default value is AUTO . AUTO indicates that the reduction option will
be determined by the usage context. For almost all cases this defaults to
SUM_OVER_BATCH_SIZE .
When used with tf.distribute.Strategy , outside of built-in training
loops such as tf.keras compile and fit , using AUTO or
SUM_OVER_BATCH_SIZE will raise an error. Please see
https://www.tensorflow.org/tutorials/distribute/custom_training
for more details on this.
|
name
|
(Optional) Name for the op.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args |
config
|
Output of get_config() .
|
get_config
View source
get_config()
__call__
View source
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a
coefficient for the loss. If a scalar is provided, then the loss is
simply scaled by the given value. If sample_weight is a tensor of size
[batch_size] , then the total loss for each sample of the batch is
rescaled by the corresponding element in the sample_weight vector. If
the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is scaled
by the corresponding value of sample_weight . (Note ondN-1 : all loss
functions reduce by 1 dimension, usually axis=-1.)
|
Returns |
Weighted loss float Tensor . If reduction is NONE , this has
shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note dN-1
because all loss functions reduce by 1 dimension, usually axis=-1.)
|
Raises |
ValueError
|
If the shape of sample_weight is invalid.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.losses.BinaryCrossentropy\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/losses/BinaryCrossentropy) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/losses.py#L348-L406) |\n\nComputes the cross-entropy loss between true labels and predicted labels.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.losses.BinaryCrossentropy`](/api_docs/python/tf/keras/losses/BinaryCrossentropy)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.losses.BinaryCrossentropy`](/api_docs/python/tf/keras/losses/BinaryCrossentropy)\n\n\u003cbr /\u003e\n\n tf.keras.losses.BinaryCrossentropy(\n from_logits=False, label_smoothing=0, reduction=losses_utils.ReductionV2.AUTO,\n name='binary_crossentropy'\n )\n\nUse this cross-entropy loss when there are only two label classes (assumed to\nbe 0 and 1). For each example, there should be a single floating-point value\nper prediction.\n\nIn the snippet below, each of the four examples has only a single\nfloating-pointing value, and both `y_pred` and `y_true` have the shape\n`[batch_size]`.\n\n#### Usage:\n\n bce = tf.keras.losses.BinaryCrossentropy()\n loss = bce([0., 0., 1., 1.], [1., 1., 1., 0.])\n print('Loss: ', loss.numpy()) # Loss: 11.522857\n\nUsage with the [`tf.keras`](../../../tf/keras) API: \n\n model = tf.keras.Model(inputs, outputs)\n model.compile('sgd', loss=tf.keras.losses.BinaryCrossentropy())\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `from_logits` | Whether to interpret `y_pred` as a tensor of [logit](https://en.wikipedia.org/wiki/Logit) values. By default, we assume that `y_pred` contains probabilities (i.e., values in \\[0, 1\\]). Note: Using from_logits=True may be more numerically stable. |\n| `label_smoothing` | Float in \\[0, 1\\]. When 0, no smoothing occurs. When \\\u003e 0, we compute the loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. Larger values of `label_smoothing` correspond to heavier smoothing. |\n| `reduction` | (Optional) Type of [`tf.keras.losses.Reduction`](../../../tf/keras/losses/Reduction) to apply to loss. Default value is `AUTO`. `AUTO` indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used with [`tf.distribute.Strategy`](../../../tf/distribute/Strategy), outside of built-in training loops such as [`tf.keras`](../../../tf/keras) `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE` will raise an error. Please see https://www.tensorflow.org/tutorials/distribute/custom_training for more details on this. |\n| `name` | (Optional) Name for the op. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/losses.py#L130-L140) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `Loss` from its config (output of `get_config()`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `Loss` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/losses.py#L223-L228) \n\n get_config()\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/losses.py#L96-L128) \n\n __call__(\n y_true, y_pred, sample_weight=None\n )\n\nInvokes the `Loss` instance.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]` |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]` |\n| `sample_weight` | Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.) ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ||\n|--------------|---------------------------------------------|\n| `ValueError` | If the shape of `sample_weight` is invalid. |\n\n\u003cbr /\u003e"]]