tf.keras.losses.Loss
Stay organized with collections
Save and categorize content based on your preferences.
Loss base class.
tf.keras.losses.Loss(
reduction=losses_utils.ReductionV2.AUTO, name=None
)
To be implemented by subclasses:
call()
: Contains the logic for loss calculation using y_true
, y_pred
.
Example subclass implementation:
class MeanSquaredError(Loss):
def call(self, y_true, y_pred):
y_pred = ops.convert_to_tensor(y_pred)
y_true = math_ops.cast(y_true, y_pred.dtype)
return K.mean(math_ops.square(y_pred - y_true), axis=-1)
When used with tf.distribute.Strategy
, outside of built-in training loops
such as tf.keras
compile
and fit
, please use 'SUM' or 'NONE' reduction
types, and reduce losses explicitly in your training loop. Using 'AUTO' or
'SUM_OVER_BATCH_SIZE' will raise an error.
Please see
https://www.tensorflow.org/tutorials/distribute/custom_training for more
details on this.
You can implement 'SUM_OVER_BATCH_SIZE' using global batch size like:
with strategy.scope():
loss_obj = tf.keras.losses.CategoricalCrossentropy(
reduction=tf.keras.losses.Reduction.NONE)
....
loss = (tf.reduce_sum(loss_obj(labels, predictions)) *
(1. / global_batch_size))
Args |
reduction
|
(Optional) Type of tf.keras.losses.Reduction to apply to loss.
Default value is AUTO . AUTO indicates that the reduction option will
be determined by the usage context. For almost all cases this defaults to
SUM_OVER_BATCH_SIZE .
When used with tf.distribute.Strategy , outside of built-in training
loops such as tf.keras compile and fit , using AUTO or
SUM_OVER_BATCH_SIZE will raise an error. Please see
https://www.tensorflow.org/tutorials/distribute/custom_training
for more details on this.
|
name
|
Optional name for the op.
|
Methods
call
View source
@abc.abstractmethod
call(
y_true, y_pred
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values, with the same shape as 'y_pred'.
|
y_pred
|
The predicted values.
|
from_config
View source
@classmethod
from_config(
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args |
config
|
Output of get_config() .
|
get_config
View source
get_config()
__call__
View source
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a
coefficient for the loss. If a scalar is provided, then the loss is
simply scaled by the given value. If sample_weight is a tensor of size
[batch_size] , then the total loss for each sample of the batch is
rescaled by the corresponding element in the sample_weight vector. If
the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is scaled
by the corresponding value of sample_weight . (Note ondN-1 : all loss
functions reduce by 1 dimension, usually axis=-1.)
|
Returns |
Weighted loss float Tensor . If reduction is NONE , this has
shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note dN-1
because all loss functions reduce by 1 dimension, usually axis=-1.)
|
Raises |
ValueError
|
If the shape of sample_weight is invalid.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.losses.Loss\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/losses/Loss) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/losses.py#L44-L177) |\n\nLoss base class.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.losses.Loss`](/api_docs/python/tf/keras/losses/Loss)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.losses.Loss`](/api_docs/python/tf/keras/losses/Loss)\n\n\u003cbr /\u003e\n\n tf.keras.losses.Loss(\n reduction=losses_utils.ReductionV2.AUTO, name=None\n )\n\nTo be implemented by subclasses:\n\n- `call()`: Contains the logic for loss calculation using `y_true`, `y_pred`.\n\nExample subclass implementation: \n\n class MeanSquaredError(Loss):\n def call(self, y_true, y_pred):\n y_pred = ops.convert_to_tensor(y_pred)\n y_true = math_ops.cast(y_true, y_pred.dtype)\n return K.mean(math_ops.square(y_pred - y_true), axis=-1)\n\nWhen used with [`tf.distribute.Strategy`](../../../tf/distribute/Strategy), outside of built-in training loops\nsuch as [`tf.keras`](../../../tf/keras) `compile` and `fit`, please use 'SUM' or 'NONE' reduction\ntypes, and reduce losses explicitly in your training loop. Using 'AUTO' or\n'SUM_OVER_BATCH_SIZE' will raise an error.\n\nPlease see\n\u003chttps://www.tensorflow.org/tutorials/distribute/custom_training\u003e for more\ndetails on this.\n\nYou can implement 'SUM_OVER_BATCH_SIZE' using global batch size like: \n\n with strategy.scope():\n loss_obj = tf.keras.losses.CategoricalCrossentropy(\n reduction=tf.keras.losses.Reduction.NONE)\n ....\n loss = (tf.reduce_sum(loss_obj(labels, predictions)) *\n (1. / global_batch_size))\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `reduction` | (Optional) Type of [`tf.keras.losses.Reduction`](../../../tf/keras/losses/Reduction) to apply to loss. Default value is `AUTO`. `AUTO` indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used with [`tf.distribute.Strategy`](../../../tf/distribute/Strategy), outside of built-in training loops such as [`tf.keras`](../../../tf/keras) `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE` will raise an error. Please see https://www.tensorflow.org/tutorials/distribute/custom_training for more details on this. |\n| `name` | Optional name for the op. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `call`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/losses.py#L145-L154) \n\n @abc.abstractmethod\n call(\n y_true, y_pred\n )\n\nInvokes the `Loss` instance.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|-------------------------------------------------------|\n| `y_true` | Ground truth values, with the same shape as 'y_pred'. |\n| `y_pred` | The predicted values. |\n\n\u003cbr /\u003e\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/losses.py#L130-L140) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `Loss` from its config (output of `get_config()`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `Loss` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/losses.py#L142-L143) \n\n get_config()\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/losses.py#L96-L128) \n\n __call__(\n y_true, y_pred, sample_weight=None\n )\n\nInvokes the `Loss` instance.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]` |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]` |\n| `sample_weight` | Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.) ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ||\n|--------------|---------------------------------------------|\n| `ValueError` | If the shape of `sample_weight` is invalid. |\n\n\u003cbr /\u003e"]]