tf.keras.metrics.LogCoshError
Stay organized with collections
Save and categorize content based on your preferences.
Computes the logarithm of the hyperbolic cosine of the prediction error.
tf.keras.metrics.LogCoshError(
name='logcosh', dtype=None
)
logcosh = log((exp(x) + exp(-x))/2)
, where x is the error (y_pred - y_true)
Usage:
m = tf.keras.metrics.LogCoshError()
m.update_state([0., 1., 1.], [1., 0., 1.])
print('Final result: ', m.result().numpy()) # Final result: 0.289
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', metrics=[tf.keras.metrics.LogCoshError()])
Args |
fn
|
The metric function to wrap, with signature
fn(y_true, y_pred, **kwargs) .
|
name
|
(Optional) string name of the metric instance.
|
dtype
|
(Optional) data type of the metric result.
|
**kwargs
|
The keyword arguments that are passed on to fn .
|
Methods
reset_states
View source
reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps,
when a metric is evaluated during training.
result
View source
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the
metric value using the state variables.
update_state
View source
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true
and y_pred
should have the same shape.
Args |
y_true
|
The ground truth values.
|
y_pred
|
The predicted values.
|
sample_weight
|
Optional weighting of each example. Defaults to 1. Can be
a Tensor whose rank is either 0, or the same rank as y_true ,
and must be broadcastable to y_true .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.metrics.LogCoshError\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/metrics/LogCoshError) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/metrics.py#L2377-L2399) |\n\nComputes the logarithm of the hyperbolic cosine of the prediction error.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.metrics.LogCoshError`](/api_docs/python/tf/keras/metrics/LogCoshError)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.metrics.LogCoshError`](/api_docs/python/tf/keras/metrics/LogCoshError)\n\n\u003cbr /\u003e\n\n tf.keras.metrics.LogCoshError(\n name='logcosh', dtype=None\n )\n\n`logcosh = log((exp(x) + exp(-x))/2)`, where x is the error (y_pred - y_true)\n\n#### Usage:\n\n m = tf.keras.metrics.LogCoshError()\n m.update_state([0., 1., 1.], [1., 0., 1.])\n print('Final result: ', m.result().numpy()) # Final result: 0.289\n\nUsage with tf.keras API: \n\n model = tf.keras.Model(inputs, outputs)\n model.compile('sgd', metrics=[tf.keras.metrics.LogCoshError()])\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|-----------------------------------------------------------------------------|\n| `fn` | The metric function to wrap, with signature `fn(y_true, y_pred, **kwargs)`. |\n| `name` | (Optional) string name of the metric instance. |\n| `dtype` | (Optional) data type of the metric result. |\n| `**kwargs` | The keyword arguments that are passed on to `fn`. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `reset_states`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/metrics.py#L206-L212) \n\n reset_states()\n\nResets all of the metric state variables.\n\nThis function is called between epochs/steps,\nwhen a metric is evaluated during training.\n\n### `result`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/metrics.py#L364-L374) \n\n result()\n\nComputes and returns the metric value tensor.\n\nResult computation is an idempotent operation that simply calculates the\nmetric value using the state variables.\n\n### `update_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/metrics.py#L564-L589) \n\n update_state(\n y_true, y_pred, sample_weight=None\n )\n\nAccumulates metric statistics.\n\n`y_true` and `y_pred` should have the same shape.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | The ground truth values. |\n| `y_pred` | The predicted values. |\n| `sample_weight` | Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Update op. ||\n\n\u003cbr /\u003e"]]