tf.signal.ifftshift
Stay organized with collections
Save and categorize content based on your preferences.
The inverse of fftshift.
tf.signal.ifftshift(
x, axes=None, name=None
)
Although identical for even-length x,
the functions differ by one sample for odd-length x.
For example:
x = tf.signal.ifftshift([[ 0., 1., 2.],[ 3., 4., -4.],[-3., -2., -1.]])
x.numpy() # array([[ 4., -4., 3.],[-2., -1., -3.],[ 1., 2., 0.]])
Args |
x
|
Tensor , input tensor.
|
axes
|
int or shape tuple Axes over which to calculate. Defaults to None,
which shifts all axes.
|
name
|
An optional name for the operation.
|
Returns |
A Tensor , The shifted tensor.
|
Numpy Compatibility
Equivalent to numpy.fft.ifftshift.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifftshift.html
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.signal.ifftshift\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/signal/ifftshift) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/ops/signal/fft_ops.py#L396-L434) |\n\nThe inverse of fftshift.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.signal.ifftshift`](/api_docs/python/tf/signal/ifftshift)\n\n\u003cbr /\u003e\n\n tf.signal.ifftshift(\n x, axes=None, name=None\n )\n\nAlthough identical for even-length x,\nthe functions differ by one sample for odd-length x.\n\n#### For example:\n\n x = tf.signal.ifftshift([[ 0., 1., 2.],[ 3., 4., -4.],[-3., -2., -1.]])\n x.numpy() # array([[ 4., -4., 3.],[-2., -1., -3.],[ 1., 2., 0.]])\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|-----------------------------------------------------------------------------------------------|\n| `x` | `Tensor`, input tensor. |\n| `axes` | `int` or shape `tuple` Axes over which to calculate. Defaults to None, which shifts all axes. |\n| `name` | An optional name for the operation. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`, The shifted tensor. ||\n\n\u003cbr /\u003e\n\n#### Numpy Compatibility\n\nEquivalent to numpy.fft.ifftshift.\n\u003chttps://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifftshift.html\u003e"]]