|  TensorFlow 1 version |  View source on GitHub | 
Configuration for parsing a sparse input feature from an Example.
tf.io.SparseFeature(
    index_key, value_key, dtype, size, already_sorted=False
)
Note, preferably use VarLenFeature (possibly in combination with a
SequenceExample) in order to parse out SparseTensors instead of
SparseFeature due to its simplicity.
Closely mimicking the SparseTensor that will be obtained by parsing an
Example with a SparseFeature config, a SparseFeature contains a
- value_key: The name of key for a- Featurein the- Examplewhose parsed- Tensorwill be the resulting- SparseTensor.values.
- index_key: A list of names - one for each dimension in the resulting- SparseTensorwhose- indices[i][dim]indicating the position of the- i-th value in the- dimdimension will be equal to the- i-th value in the Feature with key named- index_key[dim]in the- Example.
- size: A list of ints for the resulting- SparseTensor.dense_shape.
For example, we can represent the following 2D SparseTensor
SparseTensor(indices=[[3, 1], [20, 0]],
             values=[0.5, -1.0]
             dense_shape=[100, 3])
with an Example input proto
features {
  feature { key: "val" value { float_list { value: [ 0.5, -1.0 ] } } }
  feature { key: "ix0" value { int64_list { value: [ 3, 20 ] } } }
  feature { key: "ix1" value { int64_list { value: [ 1, 0 ] } } }
}
and SparseFeature config with 2 index_keys
SparseFeature(index_key=["ix0", "ix1"],
              value_key="val",
              dtype=tf.float32,
              size=[100, 3])
Fields:
- index_key: A single string name or a list of string names of index features. For each key the underlying feature's type must be- int64and its length must always match that of the- value_keyfeature. To represent- SparseTensors with a- dense_shapeof- rankhigher than 1 a list of length- rankshould be used.
- value_key: Name of value feature. The underlying feature's type must be- dtypeand its length must always match that of all the- index_keys' features.
- dtype: Data type of the- value_keyfeature.
- size: A Python int or list thereof specifying the dense shape. Should be a list if and only if- index_keyis a list. In that case the list must be equal to the length of- index_key. Each for each entry- iall values in the- index_key[i] feature must be in- [0, size[i]).
- already_sorted: A Python boolean to specify whether the values in- value_keyare already sorted by their index position. If so skip sorting. False by default (optional).
| Attributes | |
|---|---|
| index_key | |
| value_key | |
| dtype | |
| size | |
| already_sorted | |