|  TensorFlow 1 version |  View source on GitHub | 
Transposes last two dimensions of tensor a.
tf.linalg.matrix_transpose(
    a, name='matrix_transpose', conjugate=False
)
For example:
x = tf.constant([[1, 2, 3], [4, 5, 6]])
tf.linalg.matrix_transpose(x)  # [[1, 4],
                               #  [2, 5],
                               #  [3, 6]]
x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
                 [4 + 4j, 5 + 5j, 6 + 6j]])
tf.linalg.matrix_transpose(x, conjugate=True)  # [[1 - 1j, 4 - 4j],
                                               #  [2 - 2j, 5 - 5j],
                                               #  [3 - 3j, 6 - 6j]]
# Matrix with two batch dimensions.
# x.shape is [1, 2, 3, 4]
# tf.linalg.matrix_transpose(x) is shape [1, 2, 4, 3]
Note that tf.matmul provides kwargs allowing for transpose of arguments.
This is done with minimal cost, and is preferable to using this function. E.g.
# Good!  Transpose is taken at minimal additional cost.
tf.matmul(matrix, b, transpose_b=True)
# Inefficient!
tf.matmul(matrix, tf.linalg.matrix_transpose(b))
| Args | |
|---|---|
| a | A Tensorwithrank >= 2. | 
| name | A name for the operation (optional). | 
| conjugate | Optional bool. Setting it to Trueis mathematically equivalent
to tf.math.conj(tf.linalg.matrix_transpose(input)). | 
| Returns | |
|---|---|
| A transposed batch matrix Tensor. | 
| Raises | |
|---|---|
| ValueError | If ais determined statically to haverank < 2. | 
Numpy Compatibility
In numpy transposes are memory-efficient constant time operations as they
simply return a new view of the same data with adjusted strides.
TensorFlow does not support strides, linalg.matrix_transpose returns a new
tensor with the items permuted.