Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
That is for rows we have grad for, we update var and accum as follows: $$accum += grad * grad$$ $$var -= lr * grad * (1 / sqrt(accum))$$
Nested Classes
| class | SparseApplyAdagradV2.Options | Optional attributes for SparseApplyAdagradV2 | |
Public Methods
| Output<T> | 
asOutput()
                
                   Returns the symbolic handle of a tensor. | 
| static <T, U extends Number> SparseApplyAdagradV2<T> | |
| Output<T> | 
out()
                
                   Same as "var". | 
| static SparseApplyAdagradV2.Options | 
updateSlots(Boolean updateSlots)
                
               | 
| static SparseApplyAdagradV2.Options | 
useLocking(Boolean useLocking)
                
               | 
Inherited Methods
Public Methods
public Output<T> asOutput ()
Returns the symbolic handle of a tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static SparseApplyAdagradV2<T> create (Scope scope, Operand<T> var, Operand<T> accum, Operand<T> lr, Operand<T> epsilon, Operand<T> grad, Operand<U> indices, Options... options)
Factory method to create a class wrapping a new SparseApplyAdagradV2 operation.
Parameters
| scope | current scope | 
|---|---|
| var | Should be from a Variable(). | 
| accum | Should be from a Variable(). | 
| lr | Learning rate. Must be a scalar. | 
| epsilon | Constant factor. Must be a scalar. | 
| grad | The gradient. | 
| indices | A vector of indices into the first dimension of var and accum. | 
| options | carries optional attributes values | 
Returns
- a new instance of SparseApplyAdagradV2
public static SparseApplyAdagradV2.Options useLocking (Boolean useLocking)
Parameters
| useLocking | If `True`, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. | 
|---|