Classes
| Abort | Raise a exception to abort the process when called. | 
| Abort.Options | Optional attributes for Abort | 
| All | Computes the "logical and" of elements across dimensions of a tensor. | 
| All.Options | Optional attributes for All | 
| AllToAll<T> | An Op to exchange data across TPU replicas. | 
| AnonymousHashTable | Creates a uninitialized anonymous hash table. | 
| AnonymousIteratorV2 | A container for an iterator resource. | 
| AnonymousIteratorV3 | A container for an iterator resource. | 
| AnonymousMemoryCache | |
| AnonymousMultiDeviceIterator | A container for a multi device iterator resource. | 
| AnonymousMultiDeviceIteratorV3 | A container for a multi device iterator resource. | 
| AnonymousMutableDenseHashTable | Creates an empty anonymous mutable hash table that uses tensors as the backing store. | 
| AnonymousMutableDenseHashTable.Options | Optional attributes for AnonymousMutableDenseHashTable | 
| AnonymousMutableHashTable | Creates an empty anonymous mutable hash table. | 
| AnonymousMutableHashTableOfTensors | Creates an empty anonymous mutable hash table of vector values. | 
| AnonymousMutableHashTableOfTensors.Options | Optional attributes for AnonymousMutableHashTableOfTensors | 
| AnonymousRandomSeedGenerator | |
| AnonymousSeedGenerator | |
| Any | Computes the "logical or" of elements across dimensions of a tensor. | 
| Any.Options | Optional attributes for Any | 
| ApplyAdagradV2<T> | Update '*var' according to the adagrad scheme. | 
| ApplyAdagradV2.Options | Optional attributes for ApplyAdagradV2 | 
| ApproxTopK<T extends Number> | Returns min/max k values and their indices of the input operand in an approximate manner. | 
| ApproxTopK.Options | Optional attributes for ApproxTopK | 
| AssertCardinalityDataset | |
| AssertNextDataset | A transformation that asserts which transformations happen next. | 
| AssertPrevDataset | A transformation that asserts which transformations happened previously. | 
| AssertThat | Asserts that the given condition is true. | 
| AssertThat.Options | Optional attributes for AssertThat | 
| Assign<T> | Update 'ref' by assigning 'value' to it. | 
| Assign.Options | Optional attributes for Assign | 
| AssignAdd<T> | Update 'ref' by adding 'value' to it. | 
| AssignAdd.Options | Optional attributes for AssignAdd | 
| AssignAddVariableOp | Adds a value to the current value of a variable. | 
| AssignSub<T> | Update 'ref' by subtracting 'value' from it. | 
| AssignSub.Options | Optional attributes for AssignSub | 
| AssignSubVariableOp | Subtracts a value from the current value of a variable. | 
| AssignVariableOp | Assigns a new value to a variable. | 
| AssignVariableOp.Options | Optional attributes for AssignVariableOp | 
| AssignVariableXlaConcatND | Concats input tensor across all dimensions. | 
| AssignVariableXlaConcatND.Options | Optional attributes for AssignVariableXlaConcatND | 
| AutoShardDataset | Creates a dataset that shards the input dataset. | 
| AutoShardDataset.Options | Optional attributes for AutoShardDataset | 
| BandedTriangularSolve<T> | |
| BandedTriangularSolve.Options | Optional attributes for BandedTriangularSolve | 
| Barrier | Defines a barrier that persists across different graph executions. | 
| Barrier.Options | Optional attributes for Barrier | 
| BarrierClose | Closes the given barrier. | 
| BarrierClose.Options | Optional attributes for BarrierClose | 
| BarrierIncompleteSize | Computes the number of incomplete elements in the given barrier. | 
| BarrierInsertMany | For each key, assigns the respective value to the specified component. | 
| BarrierReadySize | Computes the number of complete elements in the given barrier. | 
| BarrierTakeMany | Takes the given number of completed elements from a barrier. | 
| BarrierTakeMany.Options | Optional attributes for BarrierTakeMany | 
| Batch | Batches all input tensors nondeterministically. | 
| Batch.Options | Optional attributes for Batch | 
| BatchMatMulV2<T> | Multiplies slices of two tensors in batches. | 
| BatchMatMulV2.Options | Optional attributes for BatchMatMulV2 | 
| BatchMatMulV3<V> | Multiplies slices of two tensors in batches. | 
| BatchMatMulV3.Options | Optional attributes for BatchMatMulV3 | 
| BatchToSpace<T> | BatchToSpace for 4-D tensors of type T. | 
| BatchToSpaceNd<T> | BatchToSpace for N-D tensors of type T. | 
| BesselI0<T extends Number> | |
| BesselI1<T extends Number> | |
| BesselJ0<T extends Number> | |
| BesselJ1<T extends Number> | |
| BesselK0<T extends Number> | |
| BesselK0e<T extends Number> | |
| BesselK1<T extends Number> | |
| BesselK1e<T extends Number> | |
| BesselY0<T extends Number> | |
| BesselY1<T extends Number> | |
| Bitcast<U> | Bitcasts a tensor from one type to another without copying data. | 
| BlockLSTM<T extends Number> | Computes the LSTM cell forward propagation for all the time steps. | 
| BlockLSTM.Options | Optional attributes for BlockLSTM | 
| BlockLSTMGrad<T extends Number> | Computes the LSTM cell backward propagation for the entire time sequence. | 
| BlockLSTMGradV2<T extends Number> | Computes the LSTM cell backward propagation for the entire time sequence. | 
| BlockLSTMV2<T extends Number> | Computes the LSTM cell forward propagation for all the time steps. | 
| BlockLSTMV2.Options | Optional attributes for BlockLSTMV2 | 
| BoostedTreesAggregateStats | Aggregates the summary of accumulated stats for the batch. | 
| BoostedTreesBucketize | Bucketize each feature based on bucket boundaries. | 
| BoostedTreesCalculateBestFeatureSplit | Calculates gains for each feature and returns the best possible split information for the feature. | 
| BoostedTreesCalculateBestFeatureSplit.Options | Optional attributes for BoostedTreesCalculateBestFeatureSplit | 
| BoostedTreesCalculateBestFeatureSplitV2 | Calculates gains for each feature and returns the best possible split information for each node. | 
| BoostedTreesCalculateBestGainsPerFeature | Calculates gains for each feature and returns the best possible split information for the feature. | 
| BoostedTreesCenterBias | Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. | 
| BoostedTreesCreateEnsemble | Creates a tree ensemble model and returns a handle to it. | 
| BoostedTreesCreateQuantileStreamResource | Create the Resource for Quantile Streams. | 
| BoostedTreesCreateQuantileStreamResource.Options | Optional attributes for BoostedTreesCreateQuantileStreamResource | 
| BoostedTreesDeserializeEnsemble | Deserializes a serialized tree ensemble config and replaces current tree ensemble. | 
| BoostedTreesEnsembleResourceHandleOp | Creates a handle to a BoostedTreesEnsembleResource | 
| BoostedTreesEnsembleResourceHandleOp.Options | Optional attributes for BoostedTreesEnsembleResourceHandleOp | 
| BoostedTreesExampleDebugOutputs | Debugging/model interpretability outputs for each example. | 
| BoostedTreesFlushQuantileSummaries | Flush the quantile summaries from each quantile stream resource. | 
| BoostedTreesGetEnsembleStates | Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. | 
| BoostedTreesMakeQuantileSummaries | Makes the summary of quantiles for the batch. | 
| BoostedTreesMakeStatsSummary | Makes the summary of accumulated stats for the batch. | 
| BoostedTreesPredict | Runs multiple additive regression ensemble predictors on input instances and computes the logits. | 
| BoostedTreesQuantileStreamResourceAddSummaries | Add the quantile summaries to each quantile stream resource. | 
| BoostedTreesQuantileStreamResourceDeserialize | Deserialize bucket boundaries and ready flag into current QuantileAccumulator. | 
| BoostedTreesQuantileStreamResourceFlush | Flush the summaries for a quantile stream resource. | 
| BoostedTreesQuantileStreamResourceFlush.Options | Optional attributes for BoostedTreesQuantileStreamResourceFlush | 
| BoostedTreesQuantileStreamResourceGetBucketBoundaries | Generate the bucket boundaries for each feature based on accumulated summaries. | 
| BoostedTreesQuantileStreamResourceHandleOp | Creates a handle to a BoostedTreesQuantileStreamResource. | 
| BoostedTreesQuantileStreamResourceHandleOp.Options | Optional attributes for BoostedTreesQuantileStreamResourceHandleOp | 
| BoostedTreesSerializeEnsemble | Serializes the tree ensemble to a proto. | 
| BoostedTreesSparseAggregateStats | Aggregates the summary of accumulated stats for the batch. | 
| BoostedTreesSparseCalculateBestFeatureSplit | Calculates gains for each feature and returns the best possible split information for the feature. | 
| BoostedTreesSparseCalculateBestFeatureSplit.Options | Optional attributes for BoostedTreesSparseCalculateBestFeatureSplit | 
| BoostedTreesTrainingPredict | Runs multiple additive regression ensemble predictors on input instances and computes the update to cached logits. | 
| BoostedTreesUpdateEnsemble | Updates the tree ensemble by either adding a layer to the last tree being grown or by starting a new tree. | 
| BoostedTreesUpdateEnsembleV2 | Updates the tree ensemble by adding a layer to the last tree being grown or by starting a new tree. | 
| BoostedTreesUpdateEnsembleV2.Options | Optional attributes for BoostedTreesUpdateEnsembleV2 | 
| BroadcastDynamicShape<T extends Number> | Return the shape of s0 op s1 with broadcast. | 
| BroadcastGradientArgs<T extends Number> | Return the reduction indices for computing gradients of s0 op s1 with broadcast. | 
| BroadcastTo<T> | Broadcast an array for a compatible shape. | 
| Bucketize | Bucketizes 'input' based on 'boundaries'. | 
| CacheDatasetV2 | |
| CacheDatasetV2.Options | Optional attributes for CacheDatasetV2 | 
| CheckNumericsV2<T extends Number> | Checks a tensor for NaN, -Inf and +Inf values. | 
| ChooseFastestDataset | |
| ClipByValue<T> | Clips tensor values to a specified min and max. | 
| CollateTPUEmbeddingMemory | An op that merges the string-encoded memory config protos from all hosts. | 
| CollectiveAllToAllV2<T extends Number> | Mutually exchanges multiple tensors of identical type and shape. | 
| CollectiveAllToAllV2.Options | Optional attributes for CollectiveAllToAllV2 | 
| CollectiveAllToAllV3<T extends Number> | Mutually exchanges multiple tensors of identical type and shape. | 
| CollectiveAllToAllV3.Options | Optional attributes for CollectiveAllToAllV3 | 
| CollectiveAssignGroupV2 | Assign group keys based on group assignment. | 
| CollectiveBcastRecvV2<U> | Receives a tensor value broadcast from another device. | 
| CollectiveBcastRecvV2.Options | Optional attributes for CollectiveBcastRecvV2 | 
| CollectiveBcastSendV2<T> | Broadcasts a tensor value to one or more other devices. | 
| CollectiveBcastSendV2.Options | Optional attributes for CollectiveBcastSendV2 | 
| CollectiveGather<T extends Number> | Mutually accumulates multiple tensors of identical type and shape. | 
| CollectiveGather.Options | Optional attributes for CollectiveGather | 
| CollectiveGatherV2<T extends Number> | Mutually accumulates multiple tensors of identical type and shape. | 
| CollectiveGatherV2.Options | Optional attributes for CollectiveGatherV2 | 
| CollectiveInitializeCommunicator | Initializes a group for collective operations. | 
| CollectiveInitializeCommunicator.Options | Optional attributes for CollectiveInitializeCommunicator | 
| CollectivePermute<T> | An Op to permute tensors across replicated TPU instances. | 
| CollectiveReduceScatterV2<T extends Number> | Mutually reduces multiple tensors of identical type and shape and scatters the result. | 
| CollectiveReduceScatterV2.Options | Optional attributes for CollectiveReduceScatterV2 | 
| CollectiveReduceV2<T extends Number> | Mutually reduces multiple tensors of identical type and shape. | 
| CollectiveReduceV2.Options | Optional attributes for CollectiveReduceV2 | 
| CollectiveReduceV3<T extends Number> | Mutually reduces multiple tensors of identical type and shape. | 
| CollectiveReduceV3.Options | Optional attributes for CollectiveReduceV3 | 
| CombinedNonMaxSuppression | Greedily selects a subset of bounding boxes in descending order of score, This operation performs non_max_suppression on the inputs per batch, across all classes. | 
| CombinedNonMaxSuppression.Options | Optional attributes for CombinedNonMaxSuppression | 
| CompositeTensorVariantFromComponents | Encodes an `ExtensionType` value into a `variant` scalar Tensor. | 
| CompositeTensorVariantToComponents | Decodes a `variant` scalar Tensor into an `ExtensionType` value. | 
| CompressElement | Compresses a dataset element. | 
| ComputeBatchSize | Computes the static batch size of a dataset sans partial batches. | 
| ComputeDedupDataSize | An op computes the size of the deduplication data from embedding core and returns the updated config. | 
| ComputeDedupDataTupleMask | An op computes tuple mask of deduplication data from embedding core. | 
| Concat<T> | Concatenates tensors along one dimension. | 
| ConfigureAndInitializeGlobalTPU | An op that sets up the centralized structures for a distributed TPU system. | 
| ConfigureAndInitializeGlobalTPU.Options | Optional attributes for ConfigureAndInitializeGlobalTPU | 
| ConfigureDistributedTPU | Sets up the centralized structures for a distributed TPU system. | 
| ConfigureDistributedTPU.Options | Optional attributes for ConfigureDistributedTPU | 
| ConfigureTPUEmbedding | Sets up TPUEmbedding in a distributed TPU system. | 
| ConfigureTPUEmbeddingHost | An op that configures the TPUEmbedding software on a host. | 
| ConfigureTPUEmbeddingMemory | An op that configures the TPUEmbedding software on a host. | 
| ConnectTPUEmbeddingHosts | An op that sets up communication between TPUEmbedding host software instances after ConfigureTPUEmbeddingHost has been called on each host. | 
| Constant<T> | An operator producing a constant value. | 
| ConsumeMutexLock | This op consumes a lock created by `MutexLock`. | 
| ControlTrigger | Does nothing. | 
| Conv<T extends Number> | Computes a N-D convolution given (N+1+batch_dims)-D `input` and (N+2)-D `filter` tensors. | 
| Conv.Options | Optional attributes for Conv | 
| Conv2DBackpropFilterV2<T extends Number> | Computes the gradients of convolution with respect to the filter. | 
| Conv2DBackpropFilterV2.Options | Optional attributes for Conv2DBackpropFilterV2 | 
| Conv2DBackpropInputV2<T extends Number> | Computes the gradients of convolution with respect to the input. | 
| Conv2DBackpropInputV2.Options | Optional attributes for Conv2DBackpropInputV2 | 
| ConvertToCooTensor | |
| Copy<T> | Copy a tensor from CPU-to-CPU or GPU-to-GPU. | 
| Copy.Options | Optional attributes for Copy | 
| CopyHost<T> | Copy a tensor to host. | 
| CopyHost.Options | Optional attributes for CopyHost | 
| CopyToMesh<T> | |
| CopyToMeshGrad<T> | |
| CountUpTo<T extends Number> | Increments 'ref' until it reaches 'limit'. | 
| CrossReplicaSum<T extends Number> | An Op to sum inputs across replicated TPU instances. | 
| CSRSparseMatrixComponents<T> | Reads out the CSR components at batch `index`. | 
| CSRSparseMatrixToDense<T> | Convert a (possibly batched) CSRSparseMatrix to dense. | 
| CSRSparseMatrixToSparseTensor<T> | Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. | 
| CSVDataset | |
| CSVDatasetV2 | |
| CTCLossV2 | Calculates the CTC Loss (log probability) for each batch entry. | 
| CTCLossV2.Options | Optional attributes for CTCLossV2 | 
| CudnnRNNBackpropV3<T extends Number> | Backprop step of CudnnRNNV3. | 
| CudnnRNNBackpropV3.Options | Optional attributes for CudnnRNNBackpropV3 | 
| CudnnRNNCanonicalToParamsV2<T extends Number> | Converts CudnnRNN params from canonical form to usable form. | 
| CudnnRNNCanonicalToParamsV2.Options | Optional attributes for CudnnRNNCanonicalToParamsV2 | 
| CudnnRNNParamsToCanonicalV2<T extends Number> | Retrieves CudnnRNN params in canonical form. | 
| CudnnRNNParamsToCanonicalV2.Options | Optional attributes for CudnnRNNParamsToCanonicalV2 | 
| CudnnRNNV3<T extends Number> | A RNN backed by cuDNN. | 
| CudnnRNNV3.Options | Optional attributes for CudnnRNNV3 | 
| CumulativeLogsumexp<T extends Number> | Compute the cumulative product of the tensor `x` along `axis`. | 
| CumulativeLogsumexp.Options | Optional attributes for CumulativeLogsumexp | 
| DataServiceDataset | Creates a dataset that reads data from the tf.data service. | 
| DataServiceDataset.Options | Optional attributes for DataServiceDataset | 
| DataServiceDatasetV2 | Creates a dataset that reads data from the tf.data service. | 
| DataServiceDatasetV2.Options | Optional attributes for DataServiceDatasetV2 | 
| DatasetCardinality | Returns the cardinality of `input_dataset`. | 
| DatasetCardinality.Options | Optional attributes for DatasetCardinality | 
| DatasetFromGraph | Creates a dataset from the given `graph_def`. | 
| DatasetToGraphV2 | Returns a serialized GraphDef representing `input_dataset`. | 
| DatasetToGraphV2.Options | Optional attributes for DatasetToGraphV2 | 
| Dawsn<T extends Number> | |
| DebugGradientIdentity<T> | Identity op for gradient debugging. | 
| DebugGradientRefIdentity<T> | Identity op for gradient debugging. | 
| DebugIdentity<T> | Provides an identity mapping of the non-Ref type input tensor for debugging. | 
| DebugIdentity.Options | Optional attributes for DebugIdentity | 
| DebugIdentityV2<T> | Debug Identity V2 Op. | 
| DebugIdentityV2.Options | Optional attributes for DebugIdentityV2 | 
| DebugIdentityV3<T> | Provides an identity mapping of the non-Ref type input tensor for debugging. | 
| DebugIdentityV3.Options | Optional attributes for DebugIdentityV3 | 
| DebugNanCount | Debug NaN Value Counter Op. | 
| DebugNanCount.Options | Optional attributes for DebugNanCount | 
| DebugNumericSummary | Debug Numeric Summary Op. | 
| DebugNumericSummary.Options | Optional attributes for DebugNumericSummary | 
| DebugNumericSummaryV2<U extends Number> | Debug Numeric Summary V2 Op. | 
| DebugNumericSummaryV2.Options | Optional attributes for DebugNumericSummaryV2 | 
| DecodeImage<T extends Number> | Function for decode_bmp, decode_gif, decode_jpeg, and decode_png. | 
| DecodeImage.Options | Optional attributes for DecodeImage | 
| DecodePaddedRaw<T extends Number> | Reinterpret the bytes of a string as a vector of numbers. | 
| DecodePaddedRaw.Options | Optional attributes for DecodePaddedRaw | 
| DecodeProto | The op extracts fields from a serialized protocol buffers message into tensors. | 
| DecodeProto.Options | Optional attributes for DecodeProto | 
| DeepCopy<T> | Makes a copy of `x`. | 
| DeleteIterator | A container for an iterator resource. | 
| DeleteMemoryCache | |
| DeleteMultiDeviceIterator | A container for an iterator resource. | 
| DeleteRandomSeedGenerator | |
| DeleteSeedGenerator | |
| DeleteSessionTensor | Delete the tensor specified by its handle in the session. | 
| DenseBincount<U extends Number> | Counts the number of occurrences of each value in an integer array. | 
| DenseBincount.Options | Optional attributes for DenseBincount | 
| DenseCountSparseOutput<U extends Number> | Performs sparse-output bin counting for a tf.tensor input. | 
| DenseCountSparseOutput.Options | Optional attributes for DenseCountSparseOutput | 
| DenseToCSRSparseMatrix | Converts a dense tensor to a (possibly batched) CSRSparseMatrix. | 
| DestroyResourceOp | Deletes the resource specified by the handle. | 
| DestroyResourceOp.Options | Optional attributes for DestroyResourceOp | 
| DestroyTemporaryVariable<T> | Destroys the temporary variable and returns its final value. | 
| DeviceIndex | Return the index of device the op runs. | 
| DirectedInterleaveDataset | A substitute for `InterleaveDataset` on a fixed list of `N` datasets. | 
| DirectedInterleaveDataset.Options | Optional attributes for DirectedInterleaveDataset | 
| DisableCopyOnRead | Turns off the copy-on-read mode. | 
| DistributedSave | |
| DistributedSave.Options | Optional attributes for DistributedSave | 
| DrawBoundingBoxesV2<T extends Number> | Draw bounding boxes on a batch of images. | 
| DTensorRestoreV2 | |
| DTensorSetGlobalTPUArray | An op that informs a host of the global ids of all the of TPUs in the system. | 
| DummyIterationCounter | |
| DummyMemoryCache | |
| DummySeedGenerator | |
| DynamicEnqueueTPUEmbeddingArbitraryTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). | 
| DynamicEnqueueTPUEmbeddingArbitraryTensorBatch.Options | Optional attributes for DynamicEnqueueTPUEmbeddingArbitraryTensorBatch | 
| DynamicEnqueueTPUEmbeddingRaggedTensorBatch | |
| DynamicEnqueueTPUEmbeddingRaggedTensorBatch.Options | Optional attributes for DynamicEnqueueTPUEmbeddingRaggedTensorBatch | 
| DynamicPartition<T> | Partitions `data` into `num_partitions` tensors using indices from `partitions`. | 
| DynamicStitch<T> | Interleave the values from the `data` tensors into a single tensor. | 
| EditDistance | Computes the (possibly normalized) Levenshtein Edit Distance. | 
| EditDistance.Options | Optional attributes for EditDistance | 
| Eig<U> | Computes the eigen decomposition of one or more square matrices. | 
| Eig.Options | Optional attributes for Eig | 
| Einsum<T> | Tensor contraction according to Einstein summation convention. | 
| Empty<T> | Creates a tensor with the given shape. | 
| Empty.Options | Optional attributes for Empty | 
| EmptyTensorList | Creates and returns an empty tensor list. | 
| EmptyTensorMap | Creates and returns an empty tensor map. | 
| EncodeProto | The op serializes protobuf messages provided in the input tensors. | 
| EncodeProto.Options | Optional attributes for EncodeProto | 
| EnqueueTPUEmbeddingArbitraryTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). | 
| EnqueueTPUEmbeddingArbitraryTensorBatch.Options | Optional attributes for EnqueueTPUEmbeddingArbitraryTensorBatch | 
| EnqueueTPUEmbeddingBatch | An op that enqueues a list of input batch tensors to TPUEmbedding. | 
| EnqueueTPUEmbeddingBatch.Options | Optional attributes for EnqueueTPUEmbeddingBatch | 
| EnqueueTPUEmbeddingIntegerBatch | An op that enqueues a list of input batch tensors to TPUEmbedding. | 
| EnqueueTPUEmbeddingIntegerBatch.Options | Optional attributes for EnqueueTPUEmbeddingIntegerBatch | 
| EnqueueTPUEmbeddingRaggedTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup(). | 
| EnqueueTPUEmbeddingRaggedTensorBatch.Options | Optional attributes for EnqueueTPUEmbeddingRaggedTensorBatch | 
| EnqueueTPUEmbeddingSparseBatch | An op that enqueues TPUEmbedding input indices from a SparseTensor. | 
| EnqueueTPUEmbeddingSparseBatch.Options | Optional attributes for EnqueueTPUEmbeddingSparseBatch | 
| EnqueueTPUEmbeddingSparseTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). | 
| EnqueueTPUEmbeddingSparseTensorBatch.Options | Optional attributes for EnqueueTPUEmbeddingSparseTensorBatch | 
| EnsureShape<T> | Ensures that the tensor's shape matches the expected shape. | 
| Enter<T> | Creates or finds a child frame, and makes `data` available to the child frame. | 
| Enter.Options | Optional attributes for Enter | 
| Erfinv<T extends Number> | |
| EuclideanNorm<T> | Computes the euclidean norm of elements across dimensions of a tensor. | 
| EuclideanNorm.Options | Optional attributes for EuclideanNorm | 
| ExecuteTPUEmbeddingPartitioner | An op that executes the TPUEmbedding partitioner on the central configuration device and computes the HBM size (in bytes) required for TPUEmbedding operation. | 
| Exit<T> | Exits the current frame to its parent frame. | 
| ExpandDims<T> | Inserts a dimension of 1 into a tensor's shape. | 
| ExperimentalAutoShardDataset | Creates a dataset that shards the input dataset. | 
| ExperimentalAutoShardDataset.Options | Optional attributes for ExperimentalAutoShardDataset | 
| ExperimentalBytesProducedStatsDataset | Records the bytes size of each element of `input_dataset` in a StatsAggregator. | 
| ExperimentalChooseFastestDataset | |
| ExperimentalDatasetCardinality | Returns the cardinality of `input_dataset`. | 
| ExperimentalDatasetToTFRecord | Writes the given dataset to the given file using the TFRecord format. | 
| ExperimentalDenseToSparseBatchDataset | Creates a dataset that batches input elements into a SparseTensor. | 
| ExperimentalLatencyStatsDataset | Records the latency of producing `input_dataset` elements in a StatsAggregator. | 
| ExperimentalMatchingFilesDataset | |
| ExperimentalMaxIntraOpParallelismDataset | Creates a dataset that overrides the maximum intra-op parallelism. | 
| ExperimentalParseExampleDataset | Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. | 
| ExperimentalParseExampleDataset.Options | Optional attributes for ExperimentalParseExampleDataset | 
| ExperimentalPrivateThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
| ExperimentalRandomDataset | Creates a Dataset that returns pseudorandom numbers. | 
| ExperimentalRebatchDataset | Creates a dataset that changes the batch size. | 
| ExperimentalRebatchDataset.Options | Optional attributes for ExperimentalRebatchDataset | 
| ExperimentalSetStatsAggregatorDataset | |
| ExperimentalSlidingWindowDataset | Creates a dataset that passes a sliding window over `input_dataset`. | 
| ExperimentalSqlDataset | Creates a dataset that executes a SQL query and emits rows of the result set. | 
| ExperimentalStatsAggregatorHandle | Creates a statistics manager resource. | 
| ExperimentalStatsAggregatorHandle.Options | Optional attributes for ExperimentalStatsAggregatorHandle | 
| ExperimentalStatsAggregatorSummary | Produces a summary of any statistics recorded by the given statistics manager. | 
| ExperimentalUnbatchDataset | A dataset that splits the elements of its input into multiple elements. | 
| Expint<T extends Number> | |
| ExtractGlimpseV2 | Extracts a glimpse from the input tensor. | 
| ExtractGlimpseV2.Options | Optional attributes for ExtractGlimpseV2 | 
| ExtractVolumePatches<T extends Number> | Extract `patches` from `input` and put them in the `"depth"` output dimension. | 
| FFTND<T> | ND fast Fourier transform. | 
| FileSystemSetConfiguration | Set configuration of the file system. | 
| Fill<U> | Creates a tensor filled with a scalar value. | 
| FinalizeDataset | Creates a dataset by applying tf.data.Optionsto `input_dataset`. | 
| FinalizeDataset.Options | Optional attributes for FinalizeDataset | 
| FinalizeTPUEmbedding | An op that finalizes the TPUEmbedding configuration. | 
| Fingerprint | Generates fingerprint values. | 
| FresnelCos<T extends Number> | |
| FresnelSin<T extends Number> | |
| FusedBatchNormGradV3<T extends Number, U extends Number> | Gradient for batch normalization. | 
| FusedBatchNormGradV3.Options | Optional attributes for FusedBatchNormGradV3 | 
| FusedBatchNormV3<T extends Number, U extends Number> | Batch normalization. | 
| FusedBatchNormV3.Options | Optional attributes for FusedBatchNormV3 | 
| Gather<T> | Gather slices from `params` axis `axis` according to `indices`. | 
| Gather.Options | Optional attributes for Gather | 
| GatherNd<T> | Gather slices from `params` into a Tensor with shape specified by `indices`. | 
| GenerateBoundingBoxProposals | This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497 The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors, applies non-maximal suppression on overlapping boxes with higher than `nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter side is less than `min_size`. | 
| GenerateBoundingBoxProposals.Options | Optional attributes for GenerateBoundingBoxProposals | 
| GetElementAtIndex | Gets the element at the specified index in a dataset. | 
| GetMinibatchesInCsrWithPhysicalReplica | |
| GetMinibatchSplitsWithPhysicalReplica | |
| GetOptions | Returns the tf.data.Optionsattached to `input_dataset`. | 
| GetSessionHandle | Store the input tensor in the state of the current session. | 
| GetSessionTensor<T> | Get the value of the tensor specified by its handle. | 
| GlobalIterId | |
| Gradients | Adds operations to compute the partial derivatives of sum of ys w.r.txs,
 i.e.,d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2... 
 If  | 
| Gradients.Options | Optional attributes for Gradients | 
| GRUBlockCell<T extends Number> | Computes the GRU cell forward propagation for 1 time step. | 
| GRUBlockCellGrad<T extends Number> | Computes the GRU cell back-propagation for 1 time step. | 
| GuaranteeConst<T> | Gives a guarantee to the TF runtime that the input tensor is a constant. | 
| HashTable | Creates a non-initialized hash table. | 
| HashTable.Options | Optional attributes for HashTable | 
| HistogramFixedWidth<U extends Number> | Return histogram of values. | 
| Identity<T> | Return a tensor with the same shape and contents as the input tensor or value. | 
| IdentityN | Returns a list of tensors with the same shapes and contents as the input tensors. | 
| IFFTND<T> | ND inverse fast Fourier transform. | 
| IgnoreErrorsDataset | Creates a dataset that contains the elements of `input_dataset` ignoring errors. | 
| IgnoreErrorsDataset.Options | Optional attributes for IgnoreErrorsDataset | 
| ImageProjectiveTransformV2<T extends Number> | Applies the given transform to each of the images. | 
| ImageProjectiveTransformV2.Options | Optional attributes for ImageProjectiveTransformV2 | 
| ImageProjectiveTransformV3<T extends Number> | Applies the given transform to each of the images. | 
| ImageProjectiveTransformV3.Options | Optional attributes for ImageProjectiveTransformV3 | 
| ImmutableConst<T> | Returns immutable tensor from memory region. | 
| InfeedDequeue<T> | A placeholder op for a value that will be fed into the computation. | 
| InfeedDequeueTuple | Fetches multiple values from infeed as an XLA tuple. | 
| InfeedEnqueue | An op which feeds a single Tensor value into the computation. | 
| InfeedEnqueue.Options | Optional attributes for InfeedEnqueue | 
| InfeedEnqueuePrelinearizedBuffer | An op which enqueues prelinearized buffer into TPU infeed. | 
| InfeedEnqueuePrelinearizedBuffer.Options | Optional attributes for InfeedEnqueuePrelinearizedBuffer | 
| InfeedEnqueueTuple | Feeds multiple Tensor values into the computation as an XLA tuple. | 
| InfeedEnqueueTuple.Options | Optional attributes for InfeedEnqueueTuple | 
| InitializeTable | Table initializer that takes two tensors for keys and values respectively. | 
| InitializeTableFromDataset | |
| InitializeTableFromTextFile | Initializes a table from a text file. | 
| InitializeTableFromTextFile.Options | Optional attributes for InitializeTableFromTextFile | 
| InplaceAdd<T> | Adds v into specified rows of x. | 
| InplaceSub<T> | Subtracts `v` into specified rows of `x`. | 
| InplaceUpdate<T> | Updates specified rows 'i' with values 'v'. | 
| IRFFTND<U extends Number> | ND inverse real fast Fourier transform. | 
| IsBoostedTreesEnsembleInitialized | Checks whether a tree ensemble has been initialized. | 
| IsBoostedTreesQuantileStreamResourceInitialized | Checks whether a quantile stream has been initialized. | 
| IsotonicRegression<U extends Number> | Solves a batch of isotonic regression problems. | 
| IsTPUEmbeddingInitialized | Whether TPU Embedding is initialized in a distributed TPU system. | 
| IsTPUEmbeddingInitialized.Options | Optional attributes for IsTPUEmbeddingInitialized | 
| IsVariableInitialized | Checks whether a tensor has been initialized. | 
| IteratorGetDevice | Returns the name of the device on which `resource` has been placed. | 
| KMC2ChainInitialization | Returns the index of a data point that should be added to the seed set. | 
| KmeansPlusPlusInitialization | Selects num_to_sample rows of input using the KMeans++ criterion. | 
| KthOrderStatistic | Computes the Kth order statistic of a data set. | 
| LinSpace<T extends Number> | Generates values in an interval. | 
| ListDataset | Creates a dataset that emits each of `tensors` once. | 
| ListDataset.Options | Optional attributes for ListDataset | 
| ListSnapshotChunksDataset | |
| LMDBDataset | Creates a dataset that emits the key-value pairs in one or more LMDB files. | 
| LoadAllTPUEmbeddingParameters | An op that loads optimization parameters into embedding memory. | 
| LoadTPUEmbeddingAdadeltaParameters | Load Adadelta embedding parameters. | 
| LoadTPUEmbeddingAdadeltaParameters.Options | Optional attributes for LoadTPUEmbeddingAdadeltaParameters | 
| LoadTPUEmbeddingAdagradMomentumParameters | Load Adagrad Momentum embedding parameters. | 
| LoadTPUEmbeddingAdagradMomentumParameters.Options | Optional attributes for LoadTPUEmbeddingAdagradMomentumParameters | 
| LoadTPUEmbeddingAdagradParameters | Load Adagrad embedding parameters. | 
| LoadTPUEmbeddingAdagradParameters.Options | Optional attributes for LoadTPUEmbeddingAdagradParameters | 
| LoadTPUEmbeddingADAMParameters | Load ADAM embedding parameters. | 
| LoadTPUEmbeddingADAMParameters.Options | Optional attributes for LoadTPUEmbeddingADAMParameters | 
| LoadTPUEmbeddingCenteredRMSPropParameters | Load centered RMSProp embedding parameters. | 
| LoadTPUEmbeddingCenteredRMSPropParameters.Options | Optional attributes for LoadTPUEmbeddingCenteredRMSPropParameters | 
| LoadTPUEmbeddingFrequencyEstimatorParameters | Load frequency estimator embedding parameters. | 
| LoadTPUEmbeddingFrequencyEstimatorParameters.Options | Optional attributes for LoadTPUEmbeddingFrequencyEstimatorParameters | 
| LoadTPUEmbeddingFTRLParameters | Load FTRL embedding parameters. | 
| LoadTPUEmbeddingFTRLParameters.Options | Optional attributes for LoadTPUEmbeddingFTRLParameters | 
| LoadTPUEmbeddingMDLAdagradLightParameters | Load MDL Adagrad Light embedding parameters. | 
| LoadTPUEmbeddingMDLAdagradLightParameters.Options | Optional attributes for LoadTPUEmbeddingMDLAdagradLightParameters | 
| LoadTPUEmbeddingMomentumParameters | Load Momentum embedding parameters. | 
| LoadTPUEmbeddingMomentumParameters.Options | Optional attributes for LoadTPUEmbeddingMomentumParameters | 
| LoadTPUEmbeddingProximalAdagradParameters | Load proximal Adagrad embedding parameters. | 
| LoadTPUEmbeddingProximalAdagradParameters.Options | Optional attributes for LoadTPUEmbeddingProximalAdagradParameters | 
| LoadTPUEmbeddingProximalYogiParameters | |
| LoadTPUEmbeddingProximalYogiParameters.Options | Optional attributes for LoadTPUEmbeddingProximalYogiParameters | 
| LoadTPUEmbeddingRMSPropParameters | Load RMSProp embedding parameters. | 
| LoadTPUEmbeddingRMSPropParameters.Options | Optional attributes for LoadTPUEmbeddingRMSPropParameters | 
| LoadTPUEmbeddingStochasticGradientDescentParameters | Load SGD embedding parameters. | 
| LoadTPUEmbeddingStochasticGradientDescentParameters.Options | Optional attributes for LoadTPUEmbeddingStochasticGradientDescentParameters | 
| LookupTableExport<T, U> | Outputs all keys and values in the table. | 
| LookupTableFind<U> | Looks up keys in a table, outputs the corresponding values. | 
| LookupTableImport | Replaces the contents of the table with the specified keys and values. | 
| LookupTableInsert | Updates the table to associates keys with values. | 
| LookupTableRemove | Removes keys and its associated values from a table. | 
| LookupTableSize | Computes the number of elements in the given table. | 
| LoopCond | Forwards the input to the output. | 
| LowerBound<U extends Number> | Applies lower_bound(sorted_search_values, values) along each row. | 
| LSTMBlockCell<T extends Number> | Computes the LSTM cell forward propagation for 1 time step. | 
| LSTMBlockCell.Options | Optional attributes for LSTMBlockCell | 
| LSTMBlockCellGrad<T extends Number> | Computes the LSTM cell backward propagation for 1 timestep. | 
| Lu<T, U extends Number> | Computes the LU decomposition of one or more square matrices. | 
| MakeUnique | Make all elements in the non-Batch dimension unique, but \"close\" to their initial value. | 
| MapClear | Op removes all elements in the underlying container. | 
| MapClear.Options | Optional attributes for MapClear | 
| MapIncompleteSize | Op returns the number of incomplete elements in the underlying container. | 
| MapIncompleteSize.Options | Optional attributes for MapIncompleteSize | 
| MapPeek | Op peeks at the values at the specified key. | 
| MapPeek.Options | Optional attributes for MapPeek | 
| MapSize | Op returns the number of elements in the underlying container. | 
| MapSize.Options | Optional attributes for MapSize | 
| MapStage | Stage (key, values) in the underlying container which behaves like a hashtable. | 
| MapStage.Options | Optional attributes for MapStage | 
| MapUnstage | Op removes and returns the values associated with the key from the underlying container. | 
| MapUnstage.Options | Optional attributes for MapUnstage | 
| MapUnstageNoKey | Op removes and returns a random (key, value) from the underlying container. | 
| MapUnstageNoKey.Options | Optional attributes for MapUnstageNoKey | 
| MatrixDiagPartV2<T> | Returns the batched diagonal part of a batched tensor. | 
| MatrixDiagPartV3<T> | Returns the batched diagonal part of a batched tensor. | 
| MatrixDiagPartV3.Options | Optional attributes for MatrixDiagPartV3 | 
| MatrixDiagV2<T> | Returns a batched diagonal tensor with given batched diagonal values. | 
| MatrixDiagV3<T> | Returns a batched diagonal tensor with given batched diagonal values. | 
| MatrixDiagV3.Options | Optional attributes for MatrixDiagV3 | 
| MatrixSetDiagV2<T> | Returns a batched matrix tensor with new batched diagonal values. | 
| MatrixSetDiagV3<T> | Returns a batched matrix tensor with new batched diagonal values. | 
| MatrixSetDiagV3.Options | Optional attributes for MatrixSetDiagV3 | 
| Max<T> | Computes the maximum of elements across dimensions of a tensor. | 
| Max.Options | Optional attributes for Max | 
| MaxIntraOpParallelismDataset | Creates a dataset that overrides the maximum intra-op parallelism. | 
| Merge<T> | Forwards the value of an available tensor from `inputs` to `output`. | 
| MergeDedupData | An op merges elements of integer and float tensors into deduplication data as XLA tuple. | 
| MergeDedupData.Options | Optional attributes for MergeDedupData | 
| Min<T> | Computes the minimum of elements across dimensions of a tensor. | 
| Min.Options | Optional attributes for Min | 
| MirrorPad<T> | Pads a tensor with mirrored values. | 
| MirrorPadGrad<T> | Gradient op for `MirrorPad` op. | 
| MlirPassthroughOp | Wraps an arbitrary MLIR computation expressed as a module with a main() function. | 
| MulNoNan<T> | Returns x * y element-wise. | 
| MutableDenseHashTable | Creates an empty hash table that uses tensors as the backing store. | 
| MutableDenseHashTable.Options | Optional attributes for MutableDenseHashTable | 
| MutableHashTable | Creates an empty hash table. | 
| MutableHashTable.Options | Optional attributes for MutableHashTable | 
| MutableHashTableOfTensors | Creates an empty hash table. | 
| MutableHashTableOfTensors.Options | Optional attributes for MutableHashTableOfTensors | 
| Mutex | Creates a Mutex resource that can be locked by `MutexLock`. | 
| Mutex.Options | Optional attributes for Mutex | 
| MutexLock | Locks a mutex resource. | 
| NcclAllReduce<T extends Number> | Outputs a tensor containing the reduction across all input tensors. | 
| NcclBroadcast<T extends Number> | Sends `input` to all devices that are connected to the output. | 
| NcclReduce<T extends Number> | Reduces `input` from `num_devices` using `reduction` to a single device. | 
| Ndtri<T extends Number> | |
| NearestNeighbors | Selects the k nearest centers for each point. | 
| NextAfter<T extends Number> | Returns the next representable value of `x1` in the direction of `x2`, element-wise. | 
| NextIteration<T> | Makes its input available to the next iteration. | 
| NonDeterministicInts<U> | Non-deterministically generates some integers. | 
| NonMaxSuppressionV5<T extends Number> | Greedily selects a subset of bounding boxes in descending order of score, pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. | 
| NonMaxSuppressionV5.Options | Optional attributes for NonMaxSuppressionV5 | 
| NonSerializableDataset | |
| NoOp | Does nothing. | 
| OneHot<U> | Returns a one-hot tensor. | 
| OneHot.Options | Optional attributes for OneHot | 
| OnesLike<T> | Returns a tensor of ones with the same shape and type as x. | 
| OptimizeDatasetV2 | Creates a dataset by applying related optimizations to `input_dataset`. | 
| OptimizeDatasetV2.Options | Optional attributes for OptimizeDatasetV2 | 
| OptionsDataset | Creates a dataset by attaching tf.data.Options to `input_dataset`. | 
| OptionsDataset.Options | Optional attributes for OptionsDataset | 
| OrderedMapClear | Op removes all elements in the underlying container. | 
| OrderedMapClear.Options | Optional attributes for OrderedMapClear | 
| OrderedMapIncompleteSize | Op returns the number of incomplete elements in the underlying container. | 
| OrderedMapIncompleteSize.Options | Optional attributes for OrderedMapIncompleteSize | 
| OrderedMapPeek | Op peeks at the values at the specified key. | 
| OrderedMapPeek.Options | Optional attributes for OrderedMapPeek | 
| OrderedMapSize | Op returns the number of elements in the underlying container. | 
| OrderedMapSize.Options | Optional attributes for OrderedMapSize | 
| OrderedMapStage | Stage (key, values) in the underlying container which behaves like a ordered associative container. | 
| OrderedMapStage.Options | Optional attributes for OrderedMapStage | 
| OrderedMapUnstage | Op removes and returns the values associated with the key from the underlying container. | 
| OrderedMapUnstage.Options | Optional attributes for OrderedMapUnstage | 
| OrderedMapUnstageNoKey | Op removes and returns the (key, value) element with the smallest key from the underlying container. | 
| OrderedMapUnstageNoKey.Options | Optional attributes for OrderedMapUnstageNoKey | 
| OutfeedDequeue<T> | Retrieves a single tensor from the computation outfeed. | 
| OutfeedDequeue.Options | Optional attributes for OutfeedDequeue | 
| OutfeedDequeueTuple | Retrieve multiple values from the computation outfeed. | 
| OutfeedDequeueTuple.Options | Optional attributes for OutfeedDequeueTuple | 
| OutfeedDequeueTupleV2 | Retrieve multiple values from the computation outfeed. | 
| OutfeedDequeueV2<T> | Retrieves a single tensor from the computation outfeed. | 
| OutfeedEnqueue | Enqueue a Tensor on the computation outfeed. | 
| OutfeedEnqueueTuple | Enqueue multiple Tensor values on the computation outfeed. | 
| Pad<T> | Pads a tensor. | 
| ParallelBatchDataset | |
| ParallelBatchDataset.Options | Optional attributes for ParallelBatchDataset | 
| ParallelConcat<T> | Concatenates a list of `N` tensors along the first dimension. | 
| ParallelDynamicStitch<T> | Interleave the values from the `data` tensors into a single tensor. | 
| ParseExampleDatasetV2 | Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. | 
| ParseExampleDatasetV2.Options | Optional attributes for ParseExampleDatasetV2 | 
| ParseExampleV2 | Transforms a vector of tf.Example protos (as strings) into typed tensors. | 
| ParseSequenceExampleV2 | Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors. | 
| ParseSequenceExampleV2.Options | Optional attributes for ParseSequenceExampleV2 | 
| Placeholder<T> | A placeholder op for a value that will be fed into the computation. | 
| Placeholder.Options | Optional attributes for Placeholder | 
| PlaceholderWithDefault<T> | A placeholder op that passes through `input` when its output is not fed. | 
| Prelinearize | An op which linearizes one Tensor value to an opaque variant tensor. | 
| Prelinearize.Options | Optional attributes for Prelinearize | 
| PrelinearizeTuple | An op which linearizes multiple Tensor values to an opaque variant tensor. | 
| PrelinearizeTuple.Options | Optional attributes for PrelinearizeTuple | 
| Prints a string scalar. | |
| Print.Options | Optional attributes for Print | 
| PrivateThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
| Prod<T> | Computes the product of elements across dimensions of a tensor. | 
| Prod.Options | Optional attributes for Prod | 
| QuantizeAndDequantizeV4<T extends Number> | Quantizes then dequantizes a tensor. | 
| QuantizeAndDequantizeV4.Options | Optional attributes for QuantizeAndDequantizeV4 | 
| QuantizeAndDequantizeV4Grad<T extends Number> | Returns the gradient of `QuantizeAndDequantizeV4`. | 
| QuantizeAndDequantizeV4Grad.Options | Optional attributes for QuantizeAndDequantizeV4Grad | 
| QuantizedConcat<T> | Concatenates quantized tensors along one dimension. | 
| QuantizedConcatV2<T> | |
| QuantizedConv2DAndRelu<V> | |
| QuantizedConv2DAndRelu.Options | Optional attributes for QuantizedConv2DAndRelu | 
| QuantizedConv2DAndReluAndRequantize<V> | |
| QuantizedConv2DAndReluAndRequantize.Options | Optional attributes for QuantizedConv2DAndReluAndRequantize | 
| QuantizedConv2DAndRequantize<V> | |
| QuantizedConv2DAndRequantize.Options | Optional attributes for QuantizedConv2DAndRequantize | 
| QuantizedConv2DPerChannel<V> | Computes QuantizedConv2D per channel. | 
| QuantizedConv2DPerChannel.Options | Optional attributes for QuantizedConv2DPerChannel | 
| QuantizedConv2DWithBias<V> | |
| QuantizedConv2DWithBias.Options | Optional attributes for QuantizedConv2DWithBias | 
| QuantizedConv2DWithBiasAndRelu<V> | |
| QuantizedConv2DWithBiasAndRelu.Options | Optional attributes for QuantizedConv2DWithBiasAndRelu | 
| QuantizedConv2DWithBiasAndReluAndRequantize<W> | |
| QuantizedConv2DWithBiasAndReluAndRequantize.Options | Optional attributes for QuantizedConv2DWithBiasAndReluAndRequantize | 
| QuantizedConv2DWithBiasAndRequantize<W> | |
| QuantizedConv2DWithBiasAndRequantize.Options | Optional attributes for QuantizedConv2DWithBiasAndRequantize | 
| QuantizedConv2DWithBiasSignedSumAndReluAndRequantize<X> | |
| QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.Options | Optional attributes for QuantizedConv2DWithBiasSignedSumAndReluAndRequantize | 
| QuantizedConv2DWithBiasSumAndRelu<V> | |
| QuantizedConv2DWithBiasSumAndRelu.Options | Optional attributes for QuantizedConv2DWithBiasSumAndRelu | 
| QuantizedConv2DWithBiasSumAndReluAndRequantize<X> | |
| QuantizedConv2DWithBiasSumAndReluAndRequantize.Options | Optional attributes for QuantizedConv2DWithBiasSumAndReluAndRequantize | 
| QuantizedDepthwiseConv2D<V> | Computes quantized depthwise Conv2D. | 
| QuantizedDepthwiseConv2D.Options | Optional attributes for QuantizedDepthwiseConv2D | 
| QuantizedDepthwiseConv2DWithBias<V> | Computes quantized depthwise Conv2D with Bias. | 
| QuantizedDepthwiseConv2DWithBias.Options | Optional attributes for QuantizedDepthwiseConv2DWithBias | 
| QuantizedDepthwiseConv2DWithBiasAndRelu<V> | Computes quantized depthwise Conv2D with Bias and Relu. | 
| QuantizedDepthwiseConv2DWithBiasAndRelu.Options | Optional attributes for QuantizedDepthwiseConv2DWithBiasAndRelu | 
| QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize<W> | Computes quantized depthwise Conv2D with Bias, Relu and Requantize. | 
| QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.Options | Optional attributes for QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize | 
| QuantizedMatMulWithBias<W> | Performs a quantized matrix multiplication of `a` by the matrix `b` with bias add. | 
| QuantizedMatMulWithBias.Options | Optional attributes for QuantizedMatMulWithBias | 
| QuantizedMatMulWithBiasAndDequantize<W extends Number> | |
| QuantizedMatMulWithBiasAndDequantize.Options | Optional attributes for QuantizedMatMulWithBiasAndDequantize | 
| QuantizedMatMulWithBiasAndRelu<V> | Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu fusion. | 
| QuantizedMatMulWithBiasAndRelu.Options | Optional attributes for QuantizedMatMulWithBiasAndRelu | 
| QuantizedMatMulWithBiasAndReluAndRequantize<W> | Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu and requantize fusion. | 
| QuantizedMatMulWithBiasAndReluAndRequantize.Options | Optional attributes for QuantizedMatMulWithBiasAndReluAndRequantize | 
| QuantizedMatMulWithBiasAndRequantize<W> | |
| QuantizedMatMulWithBiasAndRequantize.Options | Optional attributes for QuantizedMatMulWithBiasAndRequantize | 
| QuantizedReshape<T> | Reshapes a quantized tensor as per the Reshape op. | 
| RaggedBincount<U extends Number> | Counts the number of occurrences of each value in an integer array. | 
| RaggedBincount.Options | Optional attributes for RaggedBincount | 
| RaggedCountSparseOutput<U extends Number> | Performs sparse-output bin counting for a ragged tensor input. | 
| RaggedCountSparseOutput.Options | Optional attributes for RaggedCountSparseOutput | 
| RaggedCross<T, U extends Number> | Generates a feature cross from a list of tensors, and returns it as a RaggedTensor. | 
| RaggedFillEmptyRows<T> | |
| RaggedFillEmptyRowsGrad<T> | |
| RaggedGather<T extends Number, U> | Gather ragged slices from `params` axis `0` according to `indices`. | 
| RaggedRange<U extends Number, T extends Number> | Returns a `RaggedTensor` containing the specified sequences of numbers. | 
| RaggedTensorFromVariant<U extends Number, T> | Decodes a `variant` Tensor into a `RaggedTensor`. | 
| RaggedTensorToSparse<U> | Converts a `RaggedTensor` into a `SparseTensor` with the same values. | 
| RaggedTensorToTensor<U> | Create a dense tensor from a ragged tensor, possibly altering its shape. | 
| RaggedTensorToVariant | Encodes a `RaggedTensor` into a `variant` Tensor. | 
| RaggedTensorToVariantGradient<U> | Helper used to compute the gradient for `RaggedTensorToVariant`. | 
| RandomDatasetV2 | Creates a Dataset that returns pseudorandom numbers. | 
| RandomDatasetV2.Options | Optional attributes for RandomDatasetV2 | 
| RandomIndexShuffle<T extends Number> | Outputs the position of `value` in a permutation of [0, ..., max_index]. | 
| RandomIndexShuffle.Options | Optional attributes for RandomIndexShuffle | 
| Range<T extends Number> | Creates a sequence of numbers. | 
| Rank | Returns the rank of a tensor. | 
| ReadVariableOp<T> | Reads the value of a variable. | 
| ReadVariableXlaSplitND<T> | Splits resource variable input tensor across all dimensions. | 
| ReadVariableXlaSplitND.Options | Optional attributes for ReadVariableXlaSplitND | 
| RebatchDataset | Creates a dataset that changes the batch size. | 
| RebatchDataset.Options | Optional attributes for RebatchDataset | 
| RebatchDatasetV2 | Creates a dataset that changes the batch size. | 
| Recv<T> | Receives the named tensor from send_device on recv_device. | 
| Recv.Options | Optional attributes for Recv | 
| RecvTPUEmbeddingActivations | An op that receives embedding activations on the TPU. | 
| ReduceAll | Computes the "logical and" of elements across dimensions of a tensor. | 
| ReduceAll.Options | Optional attributes for ReduceAll | 
| ReduceAny | Computes the "logical or" of elements across dimensions of a tensor. | 
| ReduceAny.Options | Optional attributes for ReduceAny | 
| ReduceMax<T> | Computes the maximum of elements across dimensions of a tensor. | 
| ReduceMax.Options | Optional attributes for ReduceMax | 
| ReduceMin<T> | Computes the minimum of elements across dimensions of a tensor. | 
| ReduceMin.Options | Optional attributes for ReduceMin | 
| ReduceProd<T> | Computes the product of elements across dimensions of a tensor. | 
| ReduceProd.Options | Optional attributes for ReduceProd | 
| ReduceSum<T> | Computes the sum of elements across dimensions of a tensor. | 
| ReduceSum.Options | Optional attributes for ReduceSum | 
| RefEnter<T> | Creates or finds a child frame, and makes `data` available to the child frame. | 
| RefEnter.Options | Optional attributes for RefEnter | 
| RefExit<T> | Exits the current frame to its parent frame. | 
| RefIdentity<T> | Return the same ref tensor as the input ref tensor. | 
| RefMerge<T> | Forwards the value of an available tensor from `inputs` to `output`. | 
| RefNextIteration<T> | Makes its input available to the next iteration. | 
| RefSelect<T> | Forwards the `index`th element of `inputs` to `output`. | 
| RefSwitch<T> | Forwards the ref tensor `data` to the output port determined by `pred`. | 
| RegisterDataset | Registers a dataset with the tf.data service. | 
| RegisterDataset.Options | Optional attributes for RegisterDataset | 
| RegisterDatasetV2 | Registers a dataset with the tf.data service. | 
| RegisterDatasetV2.Options | Optional attributes for RegisterDatasetV2 | 
| Relayout<T> | |
| RelayoutLike<T> | |
| RequantizationRangePerChannel | Computes requantization range per channel. | 
| RequantizePerChannel<U> | Requantizes input with min and max values known per channel. | 
| Reshape<T> | Reshapes a tensor. | 
| ResourceAccumulatorApplyGradient | Applies a gradient to a given accumulator. | 
| ResourceAccumulatorNumAccumulated | Returns the number of gradients aggregated in the given accumulators. | 
| ResourceAccumulatorSetGlobalStep | Updates the accumulator with a new value for global_step. | 
| ResourceAccumulatorTakeGradient<T> | Extracts the average gradient in the given ConditionalAccumulator. | 
| ResourceApplyAdagradV2 | Update '*var' according to the adagrad scheme. | 
| ResourceApplyAdagradV2.Options | Optional attributes for ResourceApplyAdagradV2 | 
| ResourceApplyAdamWithAmsgrad | Update '*var' according to the Adam algorithm. | 
| ResourceApplyAdamWithAmsgrad.Options | Optional attributes for ResourceApplyAdamWithAmsgrad | 
| ResourceApplyKerasMomentum | Update '*var' according to the momentum scheme. | 
| ResourceApplyKerasMomentum.Options | Optional attributes for ResourceApplyKerasMomentum | 
| ResourceConditionalAccumulator | A conditional accumulator for aggregating gradients. | 
| ResourceConditionalAccumulator.Options | Optional attributes for ResourceConditionalAccumulator | 
| ResourceCountUpTo<T extends Number> | Increments variable pointed to by 'resource' until it reaches 'limit'. | 
| ResourceGather<U> | Gather slices from the variable pointed to by `resource` according to `indices`. | 
| ResourceGather.Options | Optional attributes for ResourceGather | 
| ResourceGatherNd<U> | |
| ResourceScatterAdd | Adds sparse updates to the variable referenced by `resource`. | 
| ResourceScatterDiv | Divides sparse updates into the variable referenced by `resource`. | 
| ResourceScatterMax | Reduces sparse updates into the variable referenced by `resource` using the `max` operation. | 
| ResourceScatterMin | Reduces sparse updates into the variable referenced by `resource` using the `min` operation. | 
| ResourceScatterMul | Multiplies sparse updates into the variable referenced by `resource`. | 
| ResourceScatterNdAdd | Applies sparse addition to individual values or slices in a Variable. | 
| ResourceScatterNdAdd.Options | Optional attributes for ResourceScatterNdAdd | 
| ResourceScatterNdMax | |
| ResourceScatterNdMax.Options | Optional attributes for ResourceScatterNdMax | 
| ResourceScatterNdMin | |
| ResourceScatterNdMin.Options | Optional attributes for ResourceScatterNdMin | 
| ResourceScatterNdSub | Applies sparse subtraction to individual values or slices in a Variable. | 
| ResourceScatterNdSub.Options | Optional attributes for ResourceScatterNdSub | 
| ResourceScatterNdUpdate | Applies sparse `updates` to individual values or slices within a given variable according to `indices`. | 
| ResourceScatterNdUpdate.Options | Optional attributes for ResourceScatterNdUpdate | 
| ResourceScatterSub | Subtracts sparse updates from the variable referenced by `resource`. | 
| ResourceScatterUpdate | Assigns sparse updates to the variable referenced by `resource`. | 
| ResourceSparseApplyAdagradV2 | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. | 
| ResourceSparseApplyAdagradV2.Options | Optional attributes for ResourceSparseApplyAdagradV2 | 
| ResourceSparseApplyKerasMomentum | Update relevant entries in '*var' and '*accum' according to the momentum scheme. | 
| ResourceSparseApplyKerasMomentum.Options | Optional attributes for ResourceSparseApplyKerasMomentum | 
| ResourceStridedSliceAssign | Assign `value` to the sliced l-value reference of `ref`. | 
| ResourceStridedSliceAssign.Options | Optional attributes for ResourceStridedSliceAssign | 
| RetrieveAllTPUEmbeddingParameters | An op that retrieves optimization parameters from embedding to host memory. | 
| RetrieveTPUEmbeddingAdadeltaParameters | Retrieve Adadelta embedding parameters. | 
| RetrieveTPUEmbeddingAdadeltaParameters.Options | Optional attributes for RetrieveTPUEmbeddingAdadeltaParameters | 
| RetrieveTPUEmbeddingAdagradMomentumParameters | Retrieve Adagrad Momentum embedding parameters. | 
| RetrieveTPUEmbeddingAdagradMomentumParameters.Options | Optional attributes for RetrieveTPUEmbeddingAdagradMomentumParameters | 
| RetrieveTPUEmbeddingAdagradParameters | Retrieve Adagrad embedding parameters. | 
| RetrieveTPUEmbeddingAdagradParameters.Options | Optional attributes for RetrieveTPUEmbeddingAdagradParameters | 
| RetrieveTPUEmbeddingADAMParameters | Retrieve ADAM embedding parameters. | 
| RetrieveTPUEmbeddingADAMParameters.Options | Optional attributes for RetrieveTPUEmbeddingADAMParameters | 
| RetrieveTPUEmbeddingCenteredRMSPropParameters | Retrieve centered RMSProp embedding parameters. | 
| RetrieveTPUEmbeddingCenteredRMSPropParameters.Options | Optional attributes for RetrieveTPUEmbeddingCenteredRMSPropParameters | 
| RetrieveTPUEmbeddingFrequencyEstimatorParameters | Retrieve frequency estimator embedding parameters. | 
| RetrieveTPUEmbeddingFrequencyEstimatorParameters.Options | Optional attributes for RetrieveTPUEmbeddingFrequencyEstimatorParameters | 
| RetrieveTPUEmbeddingFTRLParameters | Retrieve FTRL embedding parameters. | 
| RetrieveTPUEmbeddingFTRLParameters.Options | Optional attributes for RetrieveTPUEmbeddingFTRLParameters | 
| RetrieveTPUEmbeddingMDLAdagradLightParameters | Retrieve MDL Adagrad Light embedding parameters. | 
| RetrieveTPUEmbeddingMDLAdagradLightParameters.Options | Optional attributes for RetrieveTPUEmbeddingMDLAdagradLightParameters | 
| RetrieveTPUEmbeddingMomentumParameters | Retrieve Momentum embedding parameters. | 
| RetrieveTPUEmbeddingMomentumParameters.Options | Optional attributes for RetrieveTPUEmbeddingMomentumParameters | 
| RetrieveTPUEmbeddingProximalAdagradParameters | Retrieve proximal Adagrad embedding parameters. | 
| RetrieveTPUEmbeddingProximalAdagradParameters.Options | Optional attributes for RetrieveTPUEmbeddingProximalAdagradParameters | 
| RetrieveTPUEmbeddingProximalYogiParameters | |
| RetrieveTPUEmbeddingProximalYogiParameters.Options | Optional attributes for RetrieveTPUEmbeddingProximalYogiParameters | 
| RetrieveTPUEmbeddingRMSPropParameters | Retrieve RMSProp embedding parameters. | 
| RetrieveTPUEmbeddingRMSPropParameters.Options | Optional attributes for RetrieveTPUEmbeddingRMSPropParameters | 
| RetrieveTPUEmbeddingStochasticGradientDescentParameters | Retrieve SGD embedding parameters. | 
| RetrieveTPUEmbeddingStochasticGradientDescentParameters.Options | Optional attributes for RetrieveTPUEmbeddingStochasticGradientDescentParameters | 
| Reverse<T> | Reverses specific dimensions of a tensor. | 
| ReverseSequence<T> | Reverses variable length slices. | 
| ReverseSequence.Options | Optional attributes for ReverseSequence | 
| RewriteDataset | |
| RFFTND<U> | ND fast real Fourier transform. | 
| RiscAbs<T extends Number> | |
| RiscAdd<T extends Number> | Returns x + y element-wise. | 
| RiscBinaryArithmetic<T extends Number> | |
| RiscBinaryComparison | |
| RiscBitcast<U> | |
| RiscBroadcast<T> | |
| RiscCast<U> | |
| RiscCeil<T extends Number> | |
| RiscCholesky<T extends Number> | |
| RiscConcat<T> | |
| RiscConv<T extends Number> | |
| RiscConv.Options | Optional attributes for RiscConv | 
| RiscCos<T extends Number> | |
| RiscDiv<T extends Number> | |
| RiscDot<T extends Number> | |
| RiscDot.Options | Optional attributes for RiscDot | 
| RiscExp<T extends Number> | |
| RiscFft<T> | |
| RiscFloor<T extends Number> | |
| RiscGather<T> | |
| RiscGather.Options | Optional attributes for RiscGather | 
| RiscImag<U extends Number> | |
| RiscIsFinite | |
| RiscLog<T extends Number> | |
| RiscLogicalAnd | |
| RiscLogicalNot | |
| RiscLogicalOr | |
| RiscMax<T extends Number> | Returns max(x, y) element-wise. | 
| RiscMin<T extends Number> | |
| RiscMul<T extends Number> | |
| RiscNeg<T extends Number> | |
| RiscPad<T extends Number> | |
| RiscPool<T extends Number> | |
| RiscPool.Options | Optional attributes for RiscPool | 
| RiscPow<T extends Number> | |
| RiscRandomUniform | |
| RiscRandomUniform.Options | Optional attributes for RiscRandomUniform | 
| RiscReal<U extends Number> | |
| RiscReduce<T extends Number> | |
| RiscRem<T extends Number> | |
| RiscReshape<T extends Number> | |
| RiscReverse<T extends Number> | |
| RiscScatter<U extends Number> | |
| RiscShape<U extends Number> | |
| RiscSign<T extends Number> | |
| RiscSlice<T extends Number> | |
| RiscSort<T extends Number> | |
| RiscSqueeze<T> | |
| RiscSqueeze.Options | Optional attributes for RiscSqueeze | 
| RiscSub<T extends Number> | |
| RiscTranspose<T> | |
| RiscTriangularSolve<T extends Number> | |
| RiscTriangularSolve.Options | Optional attributes for RiscTriangularSolve | 
| RiscUnary<T extends Number> | |
| RngReadAndSkip | Advance the counter of a counter-based RNG. | 
| RngSkip | Advance the counter of a counter-based RNG. | 
| Roll<T> | Rolls the elements of a tensor along an axis. | 
| SamplingDataset | Creates a dataset that takes a Bernoulli sample of the contents of another dataset. | 
| ScaleAndTranslate | |
| ScaleAndTranslate.Options | Optional attributes for ScaleAndTranslate | 
| ScaleAndTranslateGrad<T extends Number> | |
| ScaleAndTranslateGrad.Options | Optional attributes for ScaleAndTranslateGrad | 
| ScatterAdd<T> | Adds sparse updates to a variable reference. | 
| ScatterAdd.Options | Optional attributes for ScatterAdd | 
| ScatterDiv<T> | Divides a variable reference by sparse updates. | 
| ScatterDiv.Options | Optional attributes for ScatterDiv | 
| ScatterMax<T extends Number> | Reduces sparse updates into a variable reference using the `max` operation. | 
| ScatterMax.Options | Optional attributes for ScatterMax | 
| ScatterMin<T extends Number> | Reduces sparse updates into a variable reference using the `min` operation. | 
| ScatterMin.Options | Optional attributes for ScatterMin | 
| ScatterMul<T> | Multiplies sparse updates into a variable reference. | 
| ScatterMul.Options | Optional attributes for ScatterMul | 
| ScatterNd<U> | Scatters `updates` into a tensor of shape `shape` according to `indices`. | 
| ScatterNdAdd<T> | Applies sparse addition to individual values or slices in a Variable. | 
| ScatterNdAdd.Options | Optional attributes for ScatterNdAdd | 
| ScatterNdMax<T> | Computes element-wise maximum. | 
| ScatterNdMax.Options | Optional attributes for ScatterNdMax | 
| ScatterNdMin<T> | Computes element-wise minimum. | 
| ScatterNdMin.Options | Optional attributes for ScatterNdMin | 
| ScatterNdNonAliasingAdd<T> | Applies sparse addition to `input` using individual values or slices from `updates` according to indices `indices`. | 
| ScatterNdSub<T> | Applies sparse subtraction to individual values or slices in a Variable. | 
| ScatterNdSub.Options | Optional attributes for ScatterNdSub | 
| ScatterNdUpdate<T> | Applies sparse `updates` to individual values or slices within a given variable according to `indices`. | 
| ScatterNdUpdate.Options | Optional attributes for ScatterNdUpdate | 
| ScatterSub<T> | Subtracts sparse updates to a variable reference. | 
| ScatterSub.Options | Optional attributes for ScatterSub | 
| ScatterUpdate<T> | Applies sparse updates to a variable reference. | 
| ScatterUpdate.Options | Optional attributes for ScatterUpdate | 
| SegmentMaxV2<T extends Number> | Computes the maximum along segments of a tensor. | 
| SegmentMinV2<T extends Number> | Computes the minimum along segments of a tensor. | 
| SegmentProdV2<T> | Computes the product along segments of a tensor. | 
| SegmentSumV2<T> | Computes the sum along segments of a tensor. | 
| SelectV2<T> | |
| Send | Sends the named tensor from send_device to recv_device. | 
| Send.Options | Optional attributes for Send | 
| SendTPUEmbeddingGradients | Performs gradient updates of embedding tables. | 
| SetDiff1d<T, U extends Number> | Computes the difference between two lists of numbers or strings. | 
| SetSize | Number of unique elements along last dimension of input `set`. | 
| SetSize.Options | Optional attributes for SetSize | 
| Shape<U extends Number> | Returns the shape of a tensor. | 
| ShapeN<U extends Number> | Returns shape of tensors. | 
| ShardDataset | Creates a `Dataset` that includes only 1/`num_shards` of this dataset. | 
| ShardDataset.Options | Optional attributes for ShardDataset | 
| ShuffleAndRepeatDatasetV2 | |
| ShuffleAndRepeatDatasetV2.Options | Optional attributes for ShuffleAndRepeatDatasetV2 | 
| ShuffleDatasetV2 | |
| ShuffleDatasetV2.Options | Optional attributes for ShuffleDatasetV2 | 
| ShuffleDatasetV3 | |
| ShuffleDatasetV3.Options | Optional attributes for ShuffleDatasetV3 | 
| ShutdownDistributedTPU | Shuts down a running distributed TPU system. | 
| ShutdownTPUSystem | An op that shuts down the TPU system. | 
| Size<U extends Number> | Returns the size of a tensor. | 
| Skipgram | Parses a text file and creates a batch of examples. | 
| Skipgram.Options | Optional attributes for Skipgram | 
| SleepDataset | |
| Slice<T> | Return a slice from 'input'. | 
| SlidingWindowDataset | Creates a dataset that passes a sliding window over `input_dataset`. | 
| SlidingWindowDataset.Options | Optional attributes for SlidingWindowDataset | 
| Snapshot<T> | Returns a copy of the input tensor. | 
| SnapshotChunkDataset | |
| SnapshotChunkDataset.Options | Optional attributes for SnapshotChunkDataset | 
| SnapshotDataset | Creates a dataset that will write to / read from a snapshot. | 
| SnapshotDataset.Options | Optional attributes for SnapshotDataset | 
| SnapshotDatasetReader | |
| SnapshotDatasetReader.Options | Optional attributes for SnapshotDatasetReader | 
| SnapshotNestedDatasetReader | |
| SobolSample<T extends Number> | Generates points from the Sobol sequence. | 
| SpaceToBatchNd<T> | SpaceToBatch for N-D tensors of type T. | 
| SparseApplyAdagradV2<T> | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. | 
| SparseApplyAdagradV2.Options | Optional attributes for SparseApplyAdagradV2 | 
| SparseBincount<U extends Number> | Counts the number of occurrences of each value in an integer array. | 
| SparseBincount.Options | Optional attributes for SparseBincount | 
| SparseCountSparseOutput<U extends Number> | Performs sparse-output bin counting for a sparse tensor input. | 
| SparseCountSparseOutput.Options | Optional attributes for SparseCountSparseOutput | 
| SparseCrossHashed | Generates sparse cross from a list of sparse and dense tensors. | 
| SparseCrossV2 | Generates sparse cross from a list of sparse and dense tensors. | 
| SparseMatrixAdd | Sparse addition of two CSR matrices, C = alpha * A + beta * B. | 
| SparseMatrixMatMul<T> | Matrix-multiplies a sparse matrix with a dense matrix. | 
| SparseMatrixMatMul.Options | Optional attributes for SparseMatrixMatMul | 
| SparseMatrixMul | Element-wise multiplication of a sparse matrix with a dense tensor. | 
| SparseMatrixNNZ | Returns the number of nonzeroes of `sparse_matrix`. | 
| SparseMatrixOrderingAMD | Computes the Approximate Minimum Degree (AMD) ordering of `input`. | 
| SparseMatrixSoftmax | Calculates the softmax of a CSRSparseMatrix. | 
| SparseMatrixSoftmaxGrad | Calculates the gradient of the SparseMatrixSoftmax op. | 
| SparseMatrixSparseCholesky | Computes the sparse Cholesky decomposition of `input`. | 
| SparseMatrixSparseMatMul | Sparse-matrix-multiplies two CSR matrices `a` and `b`. | 
| SparseMatrixSparseMatMul.Options | Optional attributes for SparseMatrixSparseMatMul | 
| SparseMatrixTranspose | Transposes the inner (matrix) dimensions of a CSRSparseMatrix. | 
| SparseMatrixTranspose.Options | Optional attributes for SparseMatrixTranspose | 
| SparseMatrixZeros | Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. | 
| SparseSegmentMeanGradV2<T extends Number, U extends Number> | Computes gradients for SparseSegmentMean. | 
| SparseSegmentSqrtNGradV2<T extends Number, U extends Number> | Computes gradients for SparseSegmentSqrtN. | 
| SparseSegmentSumGrad<T extends Number> | Computes gradients for SparseSegmentSum. | 
| SparseSegmentSumGradV2<T extends Number, U extends Number> | Computes gradients for SparseSegmentSum. | 
| SparseTensorToCSRSparseMatrix | Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. | 
| Spence<T extends Number> | |
| Split<T> | Splits a tensor into `num_split` tensors along one dimension. | 
| SplitDedupData<T extends Number, U extends Number> | An op splits input deduplication data XLA tuple into integer and floating point tensors. | 
| SplitDedupData.Options | Optional attributes for SplitDedupData | 
| SplitV<T> | Splits a tensor into `num_split` tensors along one dimension. | 
| Squeeze<T> | Removes dimensions of size 1 from the shape of a tensor. | 
| Squeeze.Options | Optional attributes for Squeeze | 
| Stack<T> | Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. | 
| Stack.Options | Optional attributes for Stack | 
| Stage | Stage values similar to a lightweight Enqueue. | 
| Stage.Options | Optional attributes for Stage | 
| StageClear | Op removes all elements in the underlying container. | 
| StageClear.Options | Optional attributes for StageClear | 
| StagePeek | Op peeks at the values at the specified index. | 
| StagePeek.Options | Optional attributes for StagePeek | 
| StageSize | Op returns the number of elements in the underlying container. | 
| StageSize.Options | Optional attributes for StageSize | 
| StatefulRandomBinomial<V extends Number> | |
| StatefulStandardNormal<U> | Outputs random values from a normal distribution. | 
| StatefulStandardNormalV2<U> | Outputs random values from a normal distribution. | 
| StatefulTruncatedNormal<U> | Outputs random values from a truncated normal distribution. | 
| StatefulUniform<U> | Outputs random values from a uniform distribution. | 
| StatefulUniformFullInt<U> | Outputs random integers from a uniform distribution. | 
| StatefulUniformInt<U> | Outputs random integers from a uniform distribution. | 
| StatelessParameterizedTruncatedNormal<V extends Number> | |
| StatelessRandomBinomial<W extends Number> | Outputs deterministic pseudorandom random numbers from a binomial distribution. | 
| StatelessRandomGammaV2<V extends Number> | Outputs deterministic pseudorandom random numbers from a gamma distribution. | 
| StatelessRandomGammaV3<U extends Number> | Outputs deterministic pseudorandom random numbers from a gamma distribution. | 
| StatelessRandomGetAlg | Picks the best counter-based RNG algorithm based on device. | 
| StatelessRandomGetKeyCounter | Scrambles seed into key and counter, using the best algorithm based on device. | 
| StatelessRandomGetKeyCounterAlg | Picks the best algorithm based on device, and scrambles seed into key and counter. | 
| StatelessRandomNormalV2<U extends Number> | Outputs deterministic pseudorandom values from a normal distribution. | 
| StatelessRandomPoisson<W extends Number> | Outputs deterministic pseudorandom random numbers from a Poisson distribution. | 
| StatelessRandomUniformFullInt<V extends Number> | Outputs deterministic pseudorandom random integers from a uniform distribution. | 
| StatelessRandomUniformFullIntV2<U extends Number> | Outputs deterministic pseudorandom random integers from a uniform distribution. | 
| StatelessRandomUniformIntV2<U extends Number> | Outputs deterministic pseudorandom random integers from a uniform distribution. | 
| StatelessRandomUniformV2<U extends Number> | Outputs deterministic pseudorandom random values from a uniform distribution. | 
| StatelessSampleDistortedBoundingBox<T extends Number> | Generate a randomly distorted bounding box for an image deterministically. | 
| StatelessSampleDistortedBoundingBox.Options | Optional attributes for StatelessSampleDistortedBoundingBox | 
| StatelessShuffle<T> | Randomly and deterministically shuffles a tensor along its first dimension. | 
| StatelessTruncatedNormalV2<U extends Number> | Outputs deterministic pseudorandom values from a truncated normal distribution. | 
| StatsAggregatorHandleV2 | |
| StatsAggregatorHandleV2.Options | Optional attributes for StatsAggregatorHandleV2 | 
| StatsAggregatorSetSummaryWriter | Set a summary_writer_interface to record statistics using given stats_aggregator. | 
| StochasticCastToInt<U extends Number> | Stochastically cast a given tensor from floats to ints. | 
| StopGradient<T> | Stops gradient computation. | 
| StoreMinibatchStatisticsInFdo | |
| StridedSlice<T> | Return a strided slice from `input`. | 
| StridedSlice.Options | Optional attributes for StridedSlice | 
| StridedSliceAssign<T> | Assign `value` to the sliced l-value reference of `ref`. | 
| StridedSliceAssign.Options | Optional attributes for StridedSliceAssign | 
| StridedSliceGrad<U> | Returns the gradient of `StridedSlice`. | 
| StridedSliceGrad.Options | Optional attributes for StridedSliceGrad | 
| StringLower | Converts all uppercase characters into their respective lowercase replacements. | 
| StringLower.Options | Optional attributes for StringLower | 
| StringNGrams<T extends Number> | Creates ngrams from ragged string data. | 
| StringUpper | Converts all lowercase characters into their respective uppercase replacements. | 
| StringUpper.Options | Optional attributes for StringUpper | 
| Sum<T> | Computes the sum of elements across dimensions of a tensor. | 
| Sum.Options | Optional attributes for Sum | 
| SwitchCond<T> | Forwards `data` to the output port determined by `pred`. | 
| SyncDevice | Synchronizes the device this op is run on. | 
| TemporaryVariable<T> | Returns a tensor that may be mutated, but only persists within a single step. | 
| TemporaryVariable.Options | Optional attributes for TemporaryVariable | 
| TensorArray | An array of Tensors of given size. | 
| TensorArray.Options | Optional attributes for TensorArray | 
| TensorArrayClose | Delete the TensorArray from its resource container. | 
| TensorArrayConcat<T> | Concat the elements from the TensorArray into value `value`. | 
| TensorArrayConcat.Options | Optional attributes for TensorArrayConcat | 
| TensorArrayGather<T> | Gather specific elements from the TensorArray into output `value`. | 
| TensorArrayGather.Options | Optional attributes for TensorArrayGather | 
| TensorArrayGrad | Creates a TensorArray for storing the gradients of values in the given handle. | 
| TensorArrayGradWithShape | Creates a TensorArray for storing multiple gradients of values in the given handle. | 
| TensorArrayPack<T> | |
| TensorArrayPack.Options | Optional attributes for TensorArrayPack | 
| TensorArrayRead<T> | Read an element from the TensorArray into output `value`. | 
| TensorArrayScatter | Scatter the data from the input value into specific TensorArray elements. | 
| TensorArraySize | Get the current size of the TensorArray. | 
| TensorArraySplit | Split the data from the input value into TensorArray elements. | 
| TensorArrayUnpack | |
| TensorArrayWrite | Push an element onto the tensor_array. | 
| TensorListConcat<T> | Concats all tensors in the list along the 0th dimension. | 
| TensorListConcat.Options | Optional attributes for TensorListConcat | 
| TensorListConcatLists | |
| TensorListConcatV2<U> | Concats all tensors in the list along the 0th dimension. | 
| TensorListElementShape<T extends Number> | The shape of the elements of the given list, as a tensor. | 
| TensorListFromTensor | Creates a TensorList which, when stacked, has the value of `tensor`. | 
| TensorListGather<T> | Creates a Tensor by indexing into the TensorList. | 
| TensorListGetItem<T> | |
| TensorListLength | Returns the number of tensors in the input tensor list. | 
| TensorListPopBack<T> | Returns the last element of the input list as well as a list with all but that element. | 
| TensorListPushBack | Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. | 
| TensorListPushBackBatch | |
| TensorListReserve | List of the given size with empty elements. | 
| TensorListResize | Resizes the list. | 
| TensorListScatter | Creates a TensorList by indexing into a Tensor. | 
| TensorListScatterIntoExistingList | Scatters tensor at indices in an input list. | 
| TensorListScatterV2 | Creates a TensorList by indexing into a Tensor. | 
| TensorListSetItem | |
| TensorListSetItem.Options | Optional attributes for TensorListSetItem | 
| TensorListSplit | Splits a tensor into a list. | 
| TensorListStack<T> | Stacks all tensors in the list. | 
| TensorListStack.Options | Optional attributes for TensorListStack | 
| TensorMapErase | Returns a tensor map with item from given key erased. | 
| TensorMapHasKey | Returns whether the given key exists in the map. | 
| TensorMapInsert | Returns a map that is the 'input_handle' with the given key-value pair inserted. | 
| TensorMapLookup<U> | Returns the value from a given key in a tensor map. | 
| TensorMapSize | Returns the number of tensors in the input tensor map. | 
| TensorMapStackKeys<T> | Returns a Tensor stack of all keys in a tensor map. | 
| TensorScatterAdd<T> | Adds sparse `updates` to an existing tensor according to `indices`. | 
| TensorScatterMax<T> | Apply a sparse update to a tensor taking the element-wise maximum. | 
| TensorScatterMin<T> | |
| TensorScatterSub<T> | Subtracts sparse `updates` from an existing tensor according to `indices`. | 
| TensorScatterUpdate<T> | Scatter `updates` into an existing tensor according to `indices`. | 
| TensorStridedSliceUpdate<T> | Assign `value` to the sliced l-value reference of `input`. | 
| TensorStridedSliceUpdate.Options | Optional attributes for TensorStridedSliceUpdate | 
| TFRecordDatasetV2 | Creates a dataset that emits the records from one or more TFRecord files. | 
| TFRecordDatasetV2.Options | Optional attributes for TFRecordDatasetV2 | 
| ThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
| ThreadPoolHandle | Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
| ThreadPoolHandle.Options | Optional attributes for ThreadPoolHandle | 
| Tile<T> | Constructs a tensor by tiling a given tensor. | 
| Timestamp | Provides the time since epoch in seconds. | 
| ToBool | Converts a tensor to a scalar predicate. | 
| TopKUnique | Returns the TopK unique values in the array in sorted order. | 
| TopKWithUnique | Returns the TopK values in the array in sorted order. | 
| TPUAnnotateTensorsWithDynamicShape | |
| TPUCompilationResult | Returns the result of a TPU compilation. | 
| TPUCompileSucceededAssert | Asserts that compilation succeeded. | 
| TPUCopyWithDynamicShape | Op that copies host tensor to device with dynamic shape support. | 
| TPUEmbeddingActivations | An op enabling differentiation of TPU Embeddings. | 
| TPUExecute | Op that loads and executes a TPU program on a TPU device. | 
| TPUExecuteAndUpdateVariables | Op that executes a program with optional in-place variable updates. | 
| TpuHandleToProtoKey | Converts XRT's uid handles to TensorFlow-friendly input format. | 
| TPUOrdinalSelector | A TPU core selector Op. | 
| TPUPartitionedInput<T> | An op that groups a list of partitioned inputs together. | 
| TPUPartitionedInput.Options | Optional attributes for TPUPartitionedInput | 
| TPUPartitionedInputV2<T> | An op that groups a list of partitioned inputs together. | 
| TPUPartitionedInputV2.Options | Optional attributes for TPUPartitionedInputV2 | 
| TPUPartitionedOutput<T> | An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned outputs outside the XLA computation. | 
| TPUPartitionedOutput.Options | Optional attributes for TPUPartitionedOutput | 
| TPUPartitionedOutputV2<T> | An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned outputs outside the XLA computation. | 
| TPUReplicatedInput<T> | Connects N inputs to an N-way replicated TPU computation. | 
| TPUReplicatedInput.Options | Optional attributes for TPUReplicatedInput | 
| TPUReplicatedOutput<T> | Connects N outputs from an N-way replicated TPU computation. | 
| TPUReplicateMetadata | Metadata indicating how the TPU computation should be replicated. | 
| TPUReplicateMetadata.Options | Optional attributes for TPUReplicateMetadata | 
| TPUReshardVariables | Op that reshards on-device TPU variables to specified state. | 
| TPURoundRobin | Round-robin load balancing on TPU cores. | 
| TridiagonalMatMul<T> | Calculate product with tridiagonal matrix. | 
| TridiagonalSolve<T> | Solves tridiagonal systems of equations. | 
| TridiagonalSolve.Options | Optional attributes for TridiagonalSolve | 
| Unbatch<T> | Reverses the operation of Batch for a single output Tensor. | 
| Unbatch.Options | Optional attributes for Unbatch | 
| UnbatchGrad<T> | Gradient of Unbatch. | 
| UnbatchGrad.Options | Optional attributes for UnbatchGrad | 
| UncompressElement | Uncompresses a compressed dataset element. | 
| UnicodeDecode<T extends Number> | Decodes each string in `input` into a sequence of Unicode code points. | 
| UnicodeDecode.Options | Optional attributes for UnicodeDecode | 
| UnicodeEncode | Encode a tensor of ints into unicode strings. | 
| UnicodeEncode.Options | Optional attributes for UnicodeEncode | 
| UniformDequantize<U extends Number> | Perform dequantization on the quantized Tensor `input`. | 
| UniformDequantize.Options | Optional attributes for UniformDequantize | 
| UniformQuantize<U> | Perform quantization on Tensor `input`. | 
| UniformQuantize.Options | Optional attributes for UniformQuantize | 
| UniformQuantizedAdd<T> | Perform quantized add of quantized Tensor `lhs` and quantized Tensor `rhs` to make quantized `output`. | 
| UniformQuantizedAdd.Options | Optional attributes for UniformQuantizedAdd | 
| UniformQuantizedClipByValue<T> | Perform clip by value on the quantized Tensor `operand`. | 
| UniformQuantizedClipByValue.Options | Optional attributes for UniformQuantizedClipByValue | 
| UniformQuantizedConvolution<U> | Perform quantized convolution of quantized Tensor `lhs` and quantized Tensor `rhs`. | 
| UniformQuantizedConvolution.Options | Optional attributes for UniformQuantizedConvolution | 
| UniformQuantizedConvolutionHybrid<V extends Number> | Perform hybrid quantized convolution of float Tensor `lhs` and quantized Tensor `rhs`. | 
| UniformQuantizedConvolutionHybrid.Options | Optional attributes for UniformQuantizedConvolutionHybrid | 
| UniformQuantizedDot<U> | Perform quantized dot of quantized Tensor `lhs` and quantized Tensor `rhs` to make quantized `output`. | 
| UniformQuantizedDot.Options | Optional attributes for UniformQuantizedDot | 
| UniformQuantizedDotHybrid<V extends Number> | Perform hybrid quantized dot of float Tensor `lhs` and quantized Tensor `rhs`. | 
| UniformQuantizedDotHybrid.Options | Optional attributes for UniformQuantizedDotHybrid | 
| UniformRequantize<U> | Given quantized tensor `input`, requantize it with new quantization parameters. | 
| UniformRequantize.Options | Optional attributes for UniformRequantize | 
| Unique<T, V extends Number> | Finds unique elements along an axis of a tensor. | 
| UniqueDataset | Creates a dataset that contains the unique elements of `input_dataset`. | 
| UniqueDataset.Options | Optional attributes for UniqueDataset | 
| UniqueWithCounts<T, V extends Number> | Finds unique elements along an axis of a tensor. | 
| UnravelIndex<T extends Number> | Converts an array of flat indices into a tuple of coordinate arrays. | 
| UnsortedSegmentJoin | |
| UnsortedSegmentJoin.Options | Optional attributes for UnsortedSegmentJoin | 
| Unstack<T> | Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. | 
| Unstack.Options | Optional attributes for Unstack | 
| Unstage | Op is similar to a lightweight Dequeue. | 
| Unstage.Options | Optional attributes for Unstage | 
| UnwrapDatasetVariant | |
| UpperBound<U extends Number> | Applies upper_bound(sorted_search_values, values) along each row. | 
| VarHandleOp | Creates a handle to a Variable resource. | 
| VarHandleOp.Options | Optional attributes for VarHandleOp | 
| Variable<T> | Holds state in the form of a tensor that persists across steps. | 
| Variable.Options | Optional attributes for Variable | 
| VariableShape<T extends Number> | Returns the shape of the variable pointed to by `resource`. | 
| VarIsInitializedOp | Checks whether a resource handle-based variable has been initialized. | 
| Where | Returns locations of nonzero / true values in a tensor. | 
| Where3<T> | Selects elements from `x` or `y`, depending on `condition`. | 
| WindowOp | |
| WorkerHeartbeat | Worker heartbeat op. | 
| WrapDatasetVariant | |
| WriteRawProtoSummary | Writes a serialized proto summary. | 
| XlaConcatND<T> | Concats input tensor across all dimensions. | 
| XlaConcatND.Options | Optional attributes for XlaConcatND | 
| XlaRecvFromHost<T> | An op to receive a tensor from the host. | 
| XlaRecvTPUEmbeddingActivations | An op that receives embedding activations on the TPU. | 
| XlaRecvTPUEmbeddingDeduplicationData | Receives deduplication data (indices and weights) from the embedding core. | 
| XlaSendToHost | An op to send a tensor to the host. | 
| XlaSendTPUEmbeddingGradients | An op that performs gradient updates of embedding tables. | 
| XlaSparseCoreAdagrad | |
| XlaSparseCoreAdagradMomentum | |
| XlaSparseCoreAdam | |
| XlaSparseCoreFtrl | |
| XlaSparseCoreSgd | |
| XlaSparseDenseMatmul | |
| XlaSparseDenseMatmulGradWithAdagradAndCsrInput | |
| XlaSparseDenseMatmulGradWithAdagradAndCsrInput.Options | Optional attributes for XlaSparseDenseMatmulGradWithAdagradAndCsrInput | 
| XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput | |
| XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput.Options | Optional attributes for XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput | 
| XlaSparseDenseMatmulGradWithAdamAndCsrInput | |
| XlaSparseDenseMatmulGradWithAdamAndCsrInput.Options | Optional attributes for XlaSparseDenseMatmulGradWithAdamAndCsrInput | 
| XlaSparseDenseMatmulGradWithFtrlAndCsrInput | |
| XlaSparseDenseMatmulGradWithFtrlAndCsrInput.Options | Optional attributes for XlaSparseDenseMatmulGradWithFtrlAndCsrInput | 
| XlaSparseDenseMatmulGradWithSgdAndCsrInput | |
| XlaSparseDenseMatmulGradWithSgdAndCsrInput.Options | Optional attributes for XlaSparseDenseMatmulGradWithSgdAndCsrInput | 
| XlaSparseDenseMatmulWithCsrInput | |
| XlaSplitND<T> | Splits input tensor across all dimensions. | 
| XlaSplitND.Options | Optional attributes for XlaSplitND | 
| Xlog1py<T> | Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. | 
| Zeros<T> | An operator creating a constant initialized with zeros of the shape given by `dims`. | 
| ZerosLike<T> | Returns a tensor of zeros with the same shape and type as x. |