BatchToSpace untuk tensor ND tipe T.
Operasi ini membentuk ulang dimensi "batch" 0 menjadi dimensi `M + 1` dari bentuk `bentuk_blok + [batch]`, menyisipkan blok-blok ini kembali ke dalam kisi yang ditentukan oleh dimensi spasial `[1, ..., M]`, untuk mendapatkan hasil dengan peringkat yang sama dengan input. Dimensi spasial dari hasil antara ini kemudian secara opsional dipotong menurut `tanaman` untuk menghasilkan keluaran. Ini adalah kebalikan dari SpaceToBatch. Lihat di bawah untuk deskripsi yang tepat.
Metode Publik
Keluaran <T> | sebagai Keluaran () Mengembalikan pegangan simbolik tensor. |
statis <T, U memperluas Nomor, V memperluas Nomor> BatchToSpaceNd <T> | |
Keluaran <T> | keluaran () |
Metode Warisan
Metode Publik
Keluaran publik <T> sebagai Keluaran ()
Mengembalikan pegangan simbolik tensor.
Masukan ke operasi TensorFlow adalah keluaran dari operasi TensorFlow lainnya. Metode ini digunakan untuk mendapatkan pegangan simbolis yang mewakili perhitungan input.
public static BatchToSpaceNd <T> buat ( Lingkup lingkup , input Operand <T>, Operand <U> blockShape, Operand <V> crop)
Metode pabrik untuk membuat kelas yang membungkus operasi BatchToSpaceNd baru.
Parameter
cakupan | ruang lingkup saat ini |
---|---|
masukan | ND dengan bentuk `input_shape = [batch] + spasial_shape + sisa_shape`, dimana spasial_shape memiliki dimensi M. |
bentuk blok | 1-D dengan bentuk `[M]`, semua nilai harus >= 1. |
tanaman | 2-D dengan bentuk `[M, 2]`, semua nilai harus >= 0. `crops[i] = [crop_start, crop_end]` menentukan jumlah yang akan dipotong dari dimensi masukan `i + 1`, yang sesuai dengan dimensi spasial `i`. Diperlukan `crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1]`. Operasi ini setara dengan langkah-langkah berikut: 1. Bentuk ulang `input` menjadi `bentuk ulang` bentuk: [block_shape[0], ..., block_shape[M-1], batch / prod(block_shape), input_shape[1], ..., input_shape[N- 1]] 2. Ubah dimensi `reshape` untuk menghasilkan `permutasi` bentuk [batch / prod(block_shape), bentuk_masukan[1], bentuk_blok[0], ..., bentuk_masukan[M], bentuk_blok[M-1], bentuk_masukan[M+1], ..., bentuk_masukan[N-1]] 3. Bentuk ulang `permuted` untuk menghasilkan `reshape_permuted` dari bentuk [batch / prod(block_shape), masukan_bentuk[1] * bentuk_blok[0], ..., bentuk_masukan[M] * bentuk_blok[M-1], bentuk_masukan[M+1], ..., bentuk_masukan[N-1]] 4. Pangkas awal dan akhir dimensi `[1, ..., M]` dari `reshape_permuted` menurut `crops` untuk menghasilkan keluaran bentuk: [batch / prod(block_shape), input_shape[1] * block_shape[0] - tanaman[0,0] - tanaman[0,1], ..., input_shape[M] * block_shape[M-1] - tanaman[M-1,0] - tanaman [M-1,1], bentuk_masukan[M+1], ..., bentuk_masukan[N-1]] Beberapa contoh: (1) Untuk input bentuk `[4, 1, 1, 1]`, `block_shape = [2, 2]`, dan `crops = [[0, 0], [0, 0]]` berikut:
|
Kembali
- contoh baru BatchToSpaceNd