View source on GitHub
|
Computes softmax activations.
tf.compat.v1.math.softmax(
logits, axis=None, name=None, dim=None
)
Used for multi-class predictions. The sum of all outputs generated by softmax is 1.
This function performs the equivalent of
softmax = tf.exp(logits) / tf.reduce_sum(tf.exp(logits), axis)
Example usage:
softmax = tf.nn.softmax([-1, 0., 1.])softmax<tf.Tensor: shape=(3,), dtype=float32,numpy=array([0.09003057, 0.24472848, 0.66524094], dtype=float32)>sum(softmax)<tf.Tensor: shape=(), dtype=float32, numpy=1.0>
Returns | |
|---|---|
A Tensor. Has the same type and shape as logits.
|
Raises | |
|---|---|
InvalidArgumentError
|
if logits is empty or axis is beyond the last
dimension of logits.
|
View source on GitHub