View source on GitHub
  
 | 
Deterministically radomize jpeg encoding quality for inducing jpeg noise.
tf.image.stateless_random_jpeg_quality(
    image, min_jpeg_quality, max_jpeg_quality, seed
)
Guarantees the same results given the same seed independent of how many
times the function is called, and independent of global seed settings (e.g.
tf.random.set_seed).
min_jpeg_quality must be in the interval [0, 100] and less than
max_jpeg_quality.
max_jpeg_quality must be in the interval [0, 100].
Usage Example:
x = [[[1, 2, 3],[4, 5, 6]],[[7, 8, 9],[10, 11, 12]]]x_uint8 = tf.cast(x, tf.uint8)seed = (1, 2)tf.image.stateless_random_jpeg_quality(x_uint8, 75, 95, seed)<tf.Tensor: shape=(2, 2, 3), dtype=uint8, numpy=array([[[ 0, 4, 5],[ 1, 5, 6]],[[ 5, 9, 10],[ 5, 9, 10]]], dtype=uint8)>
Returns | |
|---|---|
Adjusted image(s), same shape and DType as image.
 | 
Raises | |
|---|---|
ValueError
 | 
if min_jpeg_quality or max_jpeg_quality is invalid.
 | 
    View source on GitHub