tf.keras.layers.GaussianDropout
Apply multiplicative 1-centered Gaussian noise.
Inherits From: Layer
, Module
tf.keras.layers.GaussianDropout(
rate, seed=None, **kwargs
)
As it is a regularization layer, it is only active at training time.
Args |
rate
|
Float, drop probability (as with Dropout ).
The multiplicative noise will have
standard deviation sqrt(rate / (1 - rate)) .
|
seed
|
Integer, optional random seed to enable deterministic behavior.
|
Call arguments |
inputs
|
Input tensor (of any rank).
|
training
|
Python boolean indicating whether the layer should behave in
training mode (adding dropout) or in inference mode (doing nothing).
|
|
Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
|
Output shape |
Same shape as input.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2022-10-27 UTC.
[null,null,["Last updated 2022-10-27 UTC."],[],[]]