View source on GitHub
|
Creates a table initializer from a tf.data.Dataset.
tf.data.experimental.DatasetInitializer(
dataset
)
Sample usage:
keys = tf.data.Dataset.range(100)values = tf.data.Dataset.range(100).map(lambda x: tf.strings.as_string(x * 2))ds = tf.data.Dataset.zip((keys, values))init = tf.data.experimental.DatasetInitializer(ds)table = tf.lookup.StaticHashTable(init, "")table.lookup(tf.constant([0, 1, 2], dtype=tf.int64)).numpy()array([b'0', b'2', b'4'], dtype=object)
Raises: ValueError if dataset doesn't conform to specifications.
Args | |
|---|---|
dataset
|
A tf.data.Dataset object that produces tuples of scalars. The
first scalar is treated as a key and the second as value.
|
Attributes | |
|---|---|
dataset
|
A tf.data.Dataset object that produces tuples of scalars. The
first scalar is treated as a key and the second as value.
|
key_dtype
|
The expected table key dtype. |
value_dtype
|
The expected table value dtype. |
Methods
initialize
initialize(
table
)
Returns the table initialization op.
View source on GitHub