tf.keras.activations.tanh
Stay organized with collections
Save and categorize content based on your preferences.
Hyperbolic tangent activation function.
tf.keras.activations.tanh(
x
)
For example:
a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)
b = tf.keras.activations.tanh(a)
b.numpy()
array([-0.9950547, -0.7615942, 0., 0.7615942, 0.9950547], dtype=float32)
Returns |
Tensor of same shape and dtype of input x , with tanh activation:
tanh(x) = sinh(x)/cosh(x) = ((exp(x) - exp(-x))/(exp(x) + exp(-x))) .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2022-10-27 UTC.
[null,null,["Last updated 2022-10-27 UTC."],[],[],null,["# tf.keras.activations.tanh\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.8.0/keras/activations.py#L354-L373) |\n\nHyperbolic tangent activation function.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.activations.tanh`](https://www.tensorflow.org/api_docs/python/tf/keras/activations/tanh)\n\n\u003cbr /\u003e\n\n tf.keras.activations.tanh(\n x\n )\n\n#### For example:\n\n a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)\n b = tf.keras.activations.tanh(a)\n b.numpy()\n array([-0.9950547, -0.7615942, 0., 0.7615942, 0.9950547], dtype=float32)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----|---------------|\n| `x` | Input tensor. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Tensor of same shape and dtype of input `x`, with tanh activation: `tanh(x) = sinh(x)/cosh(x) = ((exp(x) - exp(-x))/(exp(x) + exp(-x)))`. ||\n\n\u003cbr /\u003e"]]