tf.keras.layers.AveragePooling1D
Stay organized with collections
Save and categorize content based on your preferences.
Average pooling for temporal data.
Inherits From: Layer
, Module
tf.keras.layers.AveragePooling1D(
pool_size=2,
strides=None,
padding='valid',
data_format='channels_last',
**kwargs
)
Downsamples the input representation by taking the average value over the
window defined by pool_size
. The window is shifted by strides
. The
resulting output when using "valid" padding option has a shape of:
output_shape = (input_shape - pool_size + 1) / strides)
The resulting output shape when using the "same" padding option is:
output_shape = input_shape / strides
For example, for strides=1 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
x
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.],
[2.],
[3.],
[4.],
[5.]], dtype=float32)>
avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
strides=1, padding='valid')
avg_pool_1d(x)
<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=
array([[[1.5],
[2.5],
[3.5],
[4.5]]], dtype=float32)>
For example, for strides=2 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
x
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.],
[2.],
[3.],
[4.],
[5.]], dtype=float32)>
avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
strides=2, padding='valid')
avg_pool_1d(x)
<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=
array([[[1.5],
[3.5]]], dtype=float32)>
For example, for strides=1 and padding="same":
x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
x
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.],
[2.],
[3.],
[4.],
[5.]], dtype=float32)>
avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
strides=1, padding='same')
avg_pool_1d(x)
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.5],
[2.5],
[3.5],
[4.5],
[5.]]], dtype=float32)>
Args |
pool_size
|
Integer, size of the average pooling windows.
|
strides
|
Integer, or None. Factor by which to downscale.
E.g. 2 will halve the input.
If None, it will default to pool_size .
|
padding
|
One of "valid" or "same" (case-insensitive).
"valid" means no padding. "same" results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps) .
|
|
- If
data_format='channels_last' :
3D tensor with shape (batch_size, steps, features) .
- If
data_format='channels_first' :
3D tensor with shape (batch_size, features, steps) .
|
Output shape |
- If
data_format='channels_last' :
3D tensor with shape (batch_size, downsampled_steps, features) .
- If
data_format='channels_first' :
3D tensor with shape (batch_size, features, downsampled_steps) .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2022-10-27 UTC.
[null,null,["Last updated 2022-10-27 UTC."],[],[],null,["# tf.keras.layers.AveragePooling1D\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.8.0/keras/layers/pooling.py#L197-L306) |\n\nAverage pooling for temporal data.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer), [`Module`](../../../tf/Module)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.layers.AvgPool1D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.AveragePooling1D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D), [`tf.compat.v1.keras.layers.AvgPool1D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D)\n\n\u003cbr /\u003e\n\n tf.keras.layers.AveragePooling1D(\n pool_size=2,\n strides=None,\n padding='valid',\n data_format='channels_last',\n **kwargs\n )\n\nDownsamples the input representation by taking the average value over the\nwindow defined by `pool_size`. The window is shifted by `strides`. The\nresulting output when using \"valid\" padding option has a shape of:\n`output_shape = (input_shape - pool_size + 1) / strides)`\n\nThe resulting output shape when using the \"same\" padding option is:\n`output_shape = input_shape / strides`\n\nFor example, for strides=1 and padding=\"valid\": \n\n x = tf.constant([1., 2., 3., 4., 5.])\n x = tf.reshape(x, [1, 5, 1])\n x\n \u003ctf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=\n array([[[1.],\n [2.],\n [3.],\n [4.],\n [5.]], dtype=float32)\u003e\n avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,\n strides=1, padding='valid')\n avg_pool_1d(x)\n \u003ctf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=\n array([[[1.5],\n [2.5],\n [3.5],\n [4.5]]], dtype=float32)\u003e\n\nFor example, for strides=2 and padding=\"valid\": \n\n x = tf.constant([1., 2., 3., 4., 5.])\n x = tf.reshape(x, [1, 5, 1])\n x\n \u003ctf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=\n array([[[1.],\n [2.],\n [3.],\n [4.],\n [5.]], dtype=float32)\u003e\n avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,\n strides=2, padding='valid')\n avg_pool_1d(x)\n \u003ctf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=\n array([[[1.5],\n [3.5]]], dtype=float32)\u003e\n\nFor example, for strides=1 and padding=\"same\": \n\n x = tf.constant([1., 2., 3., 4., 5.])\n x = tf.reshape(x, [1, 5, 1])\n x\n \u003ctf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=\n array([[[1.],\n [2.],\n [3.],\n [4.],\n [5.]], dtype=float32)\u003e\n avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,\n strides=1, padding='same')\n avg_pool_1d(x)\n \u003ctf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=\n array([[[1.5],\n [2.5],\n [3.5],\n [4.5],\n [5.]]], dtype=float32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `pool_size` | Integer, size of the average pooling windows. |\n| `strides` | Integer, or None. Factor by which to downscale. E.g. 2 will halve the input. If None, it will default to `pool_size`. |\n| `padding` | One of `\"valid\"` or `\"same\"` (case-insensitive). `\"valid\"` means no padding. `\"same\"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Input shape ----------- ||\n|---|---|\n| \u003cbr /\u003e - If `data_format='channels_last'`: 3D tensor with shape `(batch_size, steps, features)`. - If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, steps)`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Output shape ------------ ||\n|---|---|\n| \u003cbr /\u003e - If `data_format='channels_last'`: 3D tensor with shape `(batch_size, downsampled_steps, features)`. - If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, downsampled_steps)`. ||\n\n\u003cbr /\u003e"]]